

Why Study Transition Metals

- Transition metals found in nature
 Rocks and minerals contain transition metals
- *Red rubies (Cr), blue sapphires (Fe and Ti)
- Many biomolecules contain transition metals * Vitamin B12 (Co), Hemoglobin, myoglobin, and cytochrome C (all Fe)
- Transition metals used in industry
- ▲ Material science (steel, alloys)
- Transition metal compounds are used as pigments
 *TiO₂ (white), PbCrO₄ (yellow), Fe₄[Fe(CN)₆]₃ (Prussian blue)

MAR

Periodic Table

MAR

d-Block Transition Elements

IIIB	IVB	VB	VIB	VIIB	/		\backslash	IB	IIB
Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd
La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg

Most have partially occupied d subshells in common oxidation states

Transition Metals

- General Properties
- ▲ Have typical metallic properties (malleable, etc.)
- ▲Not as reactive as alkali and alkaline earth metals
- Have high melting points, high boiling points, high density
- A Have 1 or 2 s electrons in valence shell
- ▲ Differ in # d electrons in n-1 energy level
- ▲ Exhibit multiple oxidation states
- ▲Both paramagnetic and diamagnetic ions exist
- ▲ Most ions deeply colored (crystal field theory)

Electronic Configurations

Element	<u>Configuration</u>		
Sc	$[Ar]3d^{1}4s^{2}$		
Ti	$[Ar]3d^24s^2$		
V	$[Ar]3d^34s^2$		
Cr	[Ar]3d ⁵ 4s ¹		
Mn	[Ar]3d ⁵ 4s ²		
Fe	$[Ar]3d^{6}4s^{2}$		
Ni	$[Ar]3d^84s^2$		
Cu	[Ar]3d ¹⁰ 4s ¹		
Zn	$[Ar]3d^{10}4s^2$		

MAR

Electronic Configurations of Transition Metal Ions

Electronic configuration of Fe ions:

 $Fe - 2e^{-} \rightarrow Fe^{2+}$

valence *ns* electrons removed first, then *n-1 d* electrons

MAR

Coordination Chemistry

Transition metals act as Lewis acids and form complexes or complex ions with Lewis bases or ligands

 $\begin{array}{c} Fe^{3+}(aq) + 6 \ CN^{-}(aq) \rightarrow Fe(CN)_{6}^{3-}(aq) \\ Lewis \ acid \qquad Lewis \ base \qquad Complex \ ion \end{array}$

 $\label{eq:Ni2+} \begin{array}{ll} Ni^{2+}(aq) + 6 \ NH_3(aq) \rightarrow Ni(NH_3)_6^{2+}(aq) \\ \\ \mbox{Lewis acid} & \mbox{Lewis base} & \mbox{Complex ion} \end{array}$

Complex contains central metal ion bonded to one or more molecules or anions

Lewis acid = **metal** = center of coordination Lewis base = **ligand** = molecules/ions covalently bonded to metal in complex

Oxidation States of Transition Elements

Paramagnetism and Diamagnetism							
Paramagnetic s diamagnetic	pecies l species	ave unpaired have all paire	electrons whi d electrons	le			
Paramagnetic sp magnetic field on the number	ecies ar ls; the n r of unp	e attracted or agnitude of t aired electron	repulsed by he effect depe is	nds			
Examples:							
Paramagnetic	Cr	[Ar] 🚹 🕇	1 1 1 3 d	↑ 4s			
Diamagnetic	Pd	[Kr] ↑↓ ↑	↓↑↓↑↓				

4 d

5s

MAR

Coordination Chemistry

A coordination compound has one or more complexes. Examples: $[Co(NH_3)_6]Cl_3$, $[Cu(NH_3)_4][PtCl_4]$, $[Pt(NH_3)_2Cl_2]$ The coordination number is the number of donor atoms bonded to the central metal atom or ion in the complex. Example: $[Co(NH_3)_6]^{3+}$ coordination number = 6 Example: $[PtCl_4]^{2+}$ coordination number = 4 Most common = 6, 4 and 2 Coordination number determined by ligands

Coordination Chemistry

Monodentate Ligands

- Monodentate ligands possess only one accessible donor group.
- H₂O is a good example since *all* metal ions exist as *aqua* complexes in water

Monodentate Ligand Examples:

▲ H₂O, CN-, NH₃, NO₂⁻, SCN-, OH-, X- (halides), CO, O²⁻

Example Complexes: [Co(NH₃)₆]³⁺

▲[Fe(SCN)₆]³⁻

Bidentate Ligands

Bidentate Ligands have "two teeth", able to bond with metal at two separate places

Bidentate Examples:

- ★ oxalate ion = $C_2O_4^{2-1}$
- ★ ethylenediamine (en) = $NH_2CH_2CH_2NH_2$
- ★ ortho-phenanthroline (o-phen)

Example Complexes:

- ▲ [Co(en)₃]³⁺
- \checkmark [Cr(C₂O₄)₃]³⁻
- ▲ [Fe(NH₃)₄(o-phen)]³⁺

MAR

Bidentate Ligands

MAR

Bidentate Ligands

EDTA

A commonly used *polydentate* ligand Forms 1:1 complexes with most metals except Group IA Forms stable, water soluble complexes High formation constants A *primary standard* material

See the movie "Blade" (!)

EDTA (Ethylenediamine tetraacetic acid) will adapt its coordination number to bond with the metal

MAR

MAR

EDTA

Formation constants (K_f) for some metal - EDTA complexes.

lon	log K	lon	log K	lon	log K
Fe ³⁺	25.1	Pb ²⁺	18.0	La ³⁺	15.4
Th4+	23.2	Cd^{2+}	16.5	Mn ²⁺	14.0
Cr ³⁺	23.0	Zn ²⁺	16.5	Ca ²⁺	10.7
Bi ³⁺	22.8	Co ²⁺	16.3	Mg ²⁺	8.7
Cu ²⁺	18.8	Al ³⁺	16.1	Sr ²⁺	8.6
Ni ²⁺	18.6	Ce ³⁺	16.0	Ba ²⁺	7.8

MAR

Nomenclature of Coordination

- The cation is named before the anion. When naming a complex:
- Cations named first, then anions. Anion metal gets *-ate* ending
- Ligands are named *first* in alphabetical order. Most ligands have *-o* ending; multiple ligands use Greek prefixes
- Metal atom/ion is named last with the oxidation state in Roman numerals.
- Use no spaces in complex name
- ◆ See <u>Coordination Compounds Handout</u>

MAR

Nomenclature: IUPAC Rules

- Neutral ligands are referred to by their usual name with these exceptions:
- ★ water, $H_2O = aqua$
- \checkmark ammonia, NH₃ = **ammine**
- ▲ carbon monoxide, CO = carbonyl
- ▲ hydroxide, OH- = **hydroxo**
- If the ligand name already contains a Greek prefix, use alternate prefixes for multiple occurrences:
 - ▲bis-, 2; tris-, 3; tetrakis-, 4; pentakis-, 5; hexakis-, 6
- ▲ The name of the ligand is placed in parentheses; i.e. bis(ethylenediamine)

MAR

MAR

Nomenclature: IUPAC Rules

[CoCl(NH₃)₅]Cl₂ pentaamminechlorocobalt(III) chloride

 $K_2[Cd(CN)_4]$ Potassium tetracyanocadmate(II) NiCl₂(en)₂ Dichlorobis(ethylenediamine)nickel(II) CrCl₃(C₄H₈O)₃ (C₄H₈O = tetrahydrofuran) Trichlorotris(tetrahydrofuran)chromium(III)

the first of a series of platinum coordination complexbased anti-cancer drugs (Platinol-AQ)

Isomerism

Isomers are compounds that have the same composition but a different arrangement of atoms in space

Important in inorganic and organic chemistry Major Types include:

- ▲ coordination sphere isomers
- ▲ linkage isomers
- ▲ geometric isomers (*cis, trans, mer, fac*)
- ▲ stereoisomers

MAR

BRACEYOURSELVES

Coordination Sphere Isomers

Coordination sphere isomers differ if a ligand is bonded to the metal in the *complex*, as opposed to being outside the coordination sphere (ionic bonding). Different reactivities!

Consider [Co(NH₃)₅Cl]Br vs. [Co(NH₃)₅Br]Cl

 $[Co(NH_3)_5Cl]Br \rightarrow [Co(NH_3)_5Cl]^+ + Br^ [\mathrm{Co}(\mathrm{NH}_3)_5\mathrm{Br}]\mathrm{Cl} \to [\mathrm{Co}(\mathrm{NH}_3)_5\mathrm{Br}]^+ + \mathrm{Cl}^-$

With AgNO3:

 $[\mathrm{Co}(\mathrm{NH}_3)_5\mathrm{Cl}]\mathrm{Br}(\mathrm{aq}) + \mathrm{AgNO}_3(\mathrm{aq}) \rightarrow$ $[Co(NH_3)_5Cl]NO_3(aq) + \frac{AgBr(s)}{2}$ $[\mathrm{Co(NH_3)_5Br}]\mathrm{Cl}(\mathrm{aq}) + \mathrm{AgNO_3(aq)} \rightarrow$ [Co(NH₃)₅Br]NO₃(aq) + AgCl(s)

(yellow color) b: pentaamminenitritocobalt(III) (red color)

Geometric Isomers

- Geometric isomers have same types and number of atoms, but they differ in the spatial arrangements of the ligands
- Inorganic complexes exhibit cis and trans isomerism in square planar and octahedral complexes, as well as mer and fac isomers in octahedral complexes
- Geometric isomers lead to different colors, melting points, boiling points, reactivities, solubilities, etc.

MAR

Properties of Optical Isomers

- Optical isomers or enantiomers possess many identical properties
- Enantiomers have similar solubilities, melting points, boiling points, colors, chemical reactivity (with nonchiral reagents)
- Enantiomers differ in their interactions with plane polarized light and other chiral reagents

MAR

Optical Isomers

MAR

Properties of Optical Isomers

Differences in enantiomer reactivity with other chiral reagents can lead to separation methods

Example:

 $\begin{array}{l} d\text{-}C_4H_4O_6^{2\text{-}}(\text{aq}) + d, l\text{-}[\text{Co}(\text{en})_3]\text{Cl}_3(\text{aq}) \rightarrow \\ chiral \ reagent \qquad racemic \ mixture \\ d\text{-}[\text{Co}(\text{en})_3](d\text{-}C_4H_4O_6^{2\text{-}})\text{Cl}(\text{s}) + \end{array}$

solid d enantiomer

l-[Co(en)₃]Cl₃(aq) +2Cl-(aq)

aqueous l enantiomer

Very complex procedures, but important (Ritalin, Thalidomide, etc.)

Crystal Field Theory

- **Crystal Field Theory** is a model for bonding in transition metal complexes
- Accounts for color and magnetism of complexes quite well
- Focuses on d-orbitals of metals. Ligands are considered to be point negative charges
- Assumes ionic bonding (no covalent bonding)
- As in organic chemistry, **molecular orbital theory** is better but much more complex

MAR

Crystal Field Theory

- *Electrostatic attractions* between the positive metal ion and the negative ligands bond them together, *lowering* the energy of the whole system
- The lone pair e's on ligands repulsed by e's in metal d orbitals; this interaction is called the crystal field
- The repulsion influences d orbital energies, but not all d orbitals influenced the same way

MAR

MAR

MAR

MAR

MAR

Crystal Field Splitting Energy

- Crystal Field Theory can be used to account for the colors of complexes as well as magnetic properties
- A complex *must* have a partially filled metallic d subshell to exhibit color; i.e. a complex with d⁰ or d¹⁰ is colorless
- Amount of paramagnetism depends on ligands; i.e. [FeF₆]³- has five unpaired electrons while [Fe(CN)₆]³- has only one

MAR

590

Yellow

560

The color observed in a compound/complex is actually the

complementary color of the color absorbed

480

Green

- Absorption of UV-visible radiation by compound or complex occurs *only* if the radiation has the energy needed to raise an e- from its ground state (highest occupied orbital or HOMO) to an excited state (usually the lowest unoccupied orbital or LUMO)
- The light energy *absorbed* = energy difference between the ground state and excited state, or

$$\Delta \mathbf{E} = \mathbf{E}_{\text{LUMO}} - \mathbf{E}_{\text{HOMO}} = \mathbf{h}\mathbf{v} = \mathbf{h}\mathbf{c}/\lambda_{\text{max}}$$

...so observed color of

complex is navy blue.

The color observed in a compound/complex is actually the

complementary color of the color absorbed

[Cu(NH₃)₄]²⁺:

absorbs yellow,

orange, and red...

MAR

- The **magnitude** of \triangle depends on the **ligand field** (i.e. *types of ligands*) and the **metal**, and \triangle determines the **color** of the complex
- Different complexes exhibit different colors due to the magnitude of Δ
- larger Δ = higher energy light absorbed, shorter wavelengths
- smaller Δ = lower energy light absorbed, longer wavelengths

MAR

Paramagnetism of Transition Metal Complexes

Many complexes / compounds are paramagnetic due to unpaired d electrons

The degree of paramagnetism dependent on ligands ("ligand field")

Example with Fe^{3+} *:*

[Fe(CN)₆]³⁻ has 1 unpaired d electron

[FeF₆]³⁻ has 5 unpaired d electrons

Crystal Field Theory answers this discrepancy

MAR

Electronic Configurations of Transition Metal Complexes

Filling electron shells via CH 221:

- lowest energy vacant orbitals are occupied first
- electrons fill degenerate orbitals singly until no longer possible (Hund's rule), then pair (Pauli Exclusion)

These rules help minimize repulsions between electrons. These rules work well for *gas-phase transition metal ions*, but they are not always followed by *transition metal complexes in a ligand field*

MAR

Electronic Configurations of Transition Metal Complexes

For complexes in a ligand field, d orbital occupancy depends on \triangle and *pairing energy*, P

- Electrons assume the configuration with the lowest possible energy "cost"
- If △ > P (△ large; strong field ligand), e's pair up in lower energy d subshell first, referred to as a low spin complex
- If △ ≤ P (△ small; weak field ligand), e's spread out among all d orbitals before any pair up, referred to as a high spin complex

d-orbital energy level diagrams octahedral complex

d^1

MAR

d-orbital energy level diagrams octahedral complex

d³

d-orbital energy level diagrams octahedral complex

 d^2

Electronic Configurations of Transition Metal Complexes

To determine which d-orbital energy level diagram to use on a complex or compound:

- \checkmark determine the oxidation # of the metal
- \checkmark determine the # of d e-'s
- ▲ determine if ligand is weak field or strong field
- ▲ draw energy level diagram

MAR

Example with Co(NH₃)₆³⁺

- The absorbance spectrum of $Co(NH_3)_6^{3+}$ is shown to the right.
 - 400 500 600 700 Wavelength (nm)
- What is the name of the complex?
 What is the coordination number?
- 3. How many d electrons does the complex possess?
- 4. Will this be a high spin or low spin complex?
- 5. Is the compound paramagnetic?
- 6. What is the value of Δ for this complex?
- o. what is the value of Δ for this complex?
- What will be the observed color of the complex? What color is absorbed?

MAR

Example with Co(NH₃)₆³⁺

What is the name of the complex?
 Each ammonia is neutral; hence, this is a cobalt(III) complex

Ammonia is named "ammine"; hence, Name = hexaamminecobalt(III) ion

- 2. What is the coordination number?
 - There are six monodentate ammonia ligands around the cobalt(III) ion; hence, this is a six coordinate compound, or the coordination number = 6

MAR

Example with Co(NH₃)₆³⁺

3. How many d electrons does the complex possess?

Cobalt(III) ions have the electron configuration: [Ar]3d⁶ (two 4s and 1 3d electron removed) This complex has six d electrons (d⁶)

- Will this be a high spin or low spin complex? To answer this, we need to look at the spectrochemical series.
 - NH_3 is considered a strong field ligand, which implies that Δ , the splitting energy, will be greater than the electron pairing energy (P).

The octahedral $\rm NH_3$ ligand field makes this a low spin complex

- 5. Is the compound paramagnetic?
 - This is a d⁶ low spin complex in an octahedral field. Three degenerate d orbitals are filled first, followed by the remaining two orbitals.

Since each orbital holds two electrons, the three lower orbitals are full and the complex is diamagnetic

d-orbital energy level diagrams for

tetrahedral complexes

End of Chapter 19

See:

* <u>Chapter Nineteen Study Guide</u>

**Important Equations (following this slide)*

*End of Chapter Problems (following this slide)

End of Chapter Problems: Test Yourself

 Give the electron configuration for the Cr³⁺ ion. Is it paramagnetic or diamagnetic?
 Which of the following ligands is expected to be monodentate and which might be polydentate? a. CH₃NH₂ b. CH₂CN c. en d. Br⁻¹ e. phen
 Give the oxidation number of the metal ion in [Mn(NH₂)₈]SO₄

Give the oxidation number of the metal ion in Cr(en)₂Cl₂

Write the formula for potassium tetrachloroplatinate(II) Write the formula for tetraamminediaquairon(II)

Name the following: [Ni(C₂O₄)₂(H₂O)₂]²⁻ Name the following: Pt(NH₃)₂(C₂O₄)

MAR

Important Equations, Constants, and Handouts

from this Chapter:

 The primary focus of this chapter is to introduce you to coordination compound nomenclature (with a little review of metals, electron configurations, etc. as well from CH 221 and CH 222)

Handouts:

<u>Coordination Compounds Handout</u>

.

MAR

MAR

4. 5. 6. 7. 8.

Page III-19-17 / Chapter Nineteen Lecture Notes

End of Chapter Problems: Answers

- [Ar]3d³, paramagnetic
 a, b, d. monodentate c, e: polydentate (bidentate)
 +2
 +2
 K₂[PtCl₄]
 [Fe(NH₃)₄(H₂O)₂]²⁺
 diaquabis(oxalato)nickelate(II) ion
 diammineoxalatoplatinum(II)