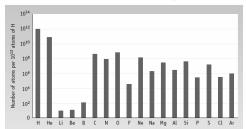
The Chemistry of the Main Group Elements

Chapter 18

Chemistry 223 Professor Michael Russell

MAR


MAR

MAR

MAR

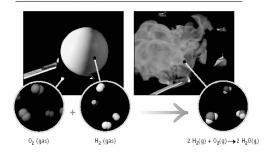
Abundance of Main Group Elements

- Note low abundance of Li, Be, and B
- · See also alternation of abundance with atomic number.
- Even atomic number = more abundant

HYDROGEN CHEMISTRY

Hindenburg: A German dirigible filed with H₂ gas. Hindenburg crashed in New Jersey after a trans-Atlantic flight in May, 1937. Of 62 people, about half escaped uninjured.

MAR


HYDROGEN CHEMISTRY

- •A modern use of H_2 in the Space Shuttle.
- ullet The rocket engine in the Shuttle itself is fueled by H_2

+ O₂.

Hydrogen and Oxygen

MAR

Hydrogen Isotopes

¹H 1.007825 amu protium

 ${}^{2}H = D$ 2.014102 deuterium

 $^{3}H = T$ 3.016049 tritium

Half-life of tritium = 12.35 years

Tritium

The tritium content of ground water is used to discover the source of the water, for example, in municipal water or the source of the steam from a volcano.

Water Gas

- · Also called "synthesis gas."
- · Treat coal with steam
- $C + H_2O --> H_2 + CO$
- Synthesis gas is the mixture of H₂ and CO.
- Much of the organic chemicals industry is changing to synthesis gas

MAR

MAR

Catalytic Steam Hydrocarbon Reforming

Most H_2 is now produced by the steam reforming process using methane.

 $C_3H_8 + 3 H_2O \rightleftharpoons 3 CO + 7 H_2$

Done at 900 °C over a catalyst

Water gas shift reaction produces additional \mathbf{H}_2 from CO

 $CO + H_2O \rightarrow CO_2 + H_2$

MAR

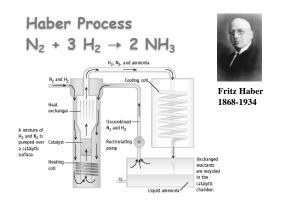
Electrolysis of Water

H₂O → H₂ + 1/2 O₂ Not widely used a) expensive b) engineering problems

MAR

Lab Prep of H₂

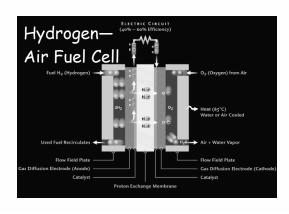
Metal + Acid


AI + NaOH

Reactions of H₂

- Virtually every element (except Group 8) will form compounds with H.
- See reaction with Br₂ to give HBr.

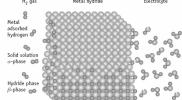
MAR


Fuel Cells: H2 as a Fuel

Fuel cell - reactants are supplied continuously from an external source. Cars can use electricity generated by $\rm H_2/O_2$ fuel cells.

H₂ carried in tanks or generated from hydrocarbons.

MAR


H₂ as a Fuel

Comparison of the volumes of substances required to store 4 kg of hydrogen relative to car size.

MAR

Storing H₂ as a Fuel

One way to store H_2 is to adsorb the gas onto a metal or metal alloy.

Sodium and Potassium

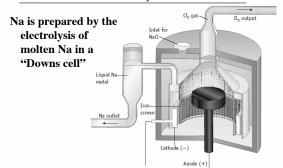
The important characteristic of Group 1A elements is their vigorous reaction with water.

K and water

MAR

MAR

MAR


MAR

Sodium and Potassium

All of the Group 1A metals are relatively soft and can be cut with a knife.

Sodium Preparation

MAR

Reactions with O2

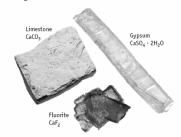
- 2 Na(s) + $O_2(g) \rightarrow Na_2O_2(s)$
- Sodium peroxide
- $\bullet \ K(s) \ + \ O_2(g) \ \to \ KO_2(s)$
- Potassium superoxide
- KO₂ used in breathing apparatus
- $\begin{array}{l} \bullet \ 4 \ KO_2(g) \ + 2 \ CO_2 \ (g) \\ \to \ 2 \ K_2CO_3(s) \ + \ 3 \ O_2(g) \end{array}$

Na-Containing Compounds

Na₂CO₃: soda ash or washing soda

Used as an industrial base, in making soap, and in making glass.

Was made by "Solvay process" but now mined as trona: Na₂CO₃•NaHCO₃•2H₂O

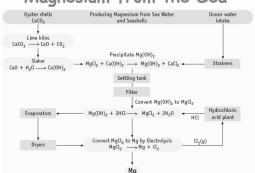


Trona mine in CA

MAR

Alkaline Earth Elements

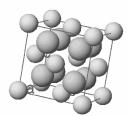
Ca and Mg 5th and 7th in abundance on Earth.



Alkaline Earth Elements Be, Ca, Mg, Sr, Ba

MAR

Magnesium from the Sea



Calcium Minerals: CaF2

CaF₂ (fluorite) used in making steel. Removes impurities from molten iron.

CaF₂ is a source of HF.

 $CaF_2 + H_2SO_4$ $\rightarrow 2 HF + CaSO_4$

MAR Mg

Calcium Minerals: CaCO₃

 $CaCO_3$ + heat $\rightarrow CO_2$ + CaO

Limestone is mostly $CaCO_3$. Heating $CaCO_3$ gives lime, CaO $CaO + H_2O \rightarrow Ca(OH)_2$, slaked lime $Ca(OH)_2$ is the most used industrial base. $CaCO_3$ used in cement, fertilizer, and in

making steel.

Calcium Minerals: CaCO₃

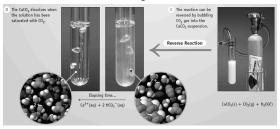
- Mortar -- a mixture of lime, sand, and water -- has been used for hundreds of years.
- Reactions involved:
- CaO + H₂O → Ca(OH)₂, slaked lime
- $-Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$
- Sand grains bound together by CaCO₃

MAR MAR

Calcium Minerals: CaCO₃

Hard water contains dissolved Ca²⁺ and Mg²⁺

$$CaCO_3 + H_2O + CO_2$$

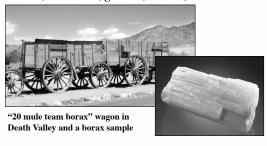

$$= Ca^{2+} + 2 HCO_3$$

MAR

If CO₂ is removed by boiling, CaCO₃ precipitates.

Calcium Minerals: CaCO3

CaCO₃ dissolved in presence of CO₂


Removing Ca²⁺ an Mg²⁺ by Ion Exchange Calcium ion, magnitum in intervented under intervented water Calcium ion, magnitum in intervented water Calcium ion, magnitum in ion, magnitum ion, magni

Chlorophyll, a molecule with Mg²⁺

MAR

Group 3A Chemistry

Boron, aluminum, gallium, indium, thallium

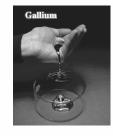
Gems & Minerals

Sapphire: Al₂O₃ with Fe³⁺ or Ti³⁺ impurity gives blue whereas V³⁺ gives violet. Ruby: Al₂O₃ with Cr³⁺ impurity

MAR

MAR

Group 3A—General Aspects

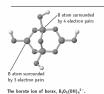

All have ns2np1

Maximum oxidation number is +3

But Tl+ exists and is poisonous

All are metals except B Abundances vary greatly

B 10 ppm
Al 82,000 ppm
Ga 18 ppm
In/Tl < 1


Group 3A—General Aspects

Diagonal relation

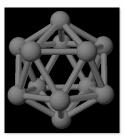
Al and Be are similar in that both form amphoteric hydroxides and inert oxides. B and Si form acidic hydroxides $[B(OH)_3]$ and $Si(OH)_4$ and both form volatile hydrides $(B_2H_6]$ and $SiH_4)$

MAR

Sources of the Elements

Boron—borax, Na₂B₄O₇•10H₂O
Has been used for centuries to braze metals (and mummify the dead).
Production of ca. 2.6 x 10⁶ tons annually

MAR


Boron Recovery

- $B_2O_3 + 3 Mg \rightarrow 2 B + 3 MgO$
- Impure B produced this way
- $2 BBr_3 + 3 H_2 \rightarrow 2 B + 6 HBr$
- BBr $_3$ vapor + H $_2$ over hot Ta wire gives B whiskers.

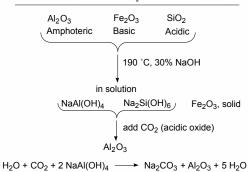
MAR

Elemental Boron

Pure boron consists of interconnected icosahedra

MAR

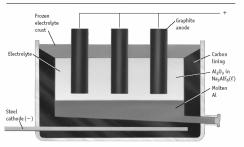
Aluminum


95% of the 90 million tons of bauxite mined is used in the Bayer process to give Al₂O₃ (corundum) 90% of the oxide is converted to Al metal

Unit cell of Al

MAR

Aluminum—Bayer Process



Aluminum Metal

- Al obtained by electrolysis of Al₂O₃/Na₂AlF₆ mixture
- Na₂AlF₆ is CRYOLITE
- Called the Hall-Heroult process
- Charles M. Hall (1863-1914)
- http://www.oberlin.edu/chem/history/cmh/ cmharticle.html

MAR

Al Production by Electrolysis

• Main use is as structural material

- Strength, low density, corrosion resistance
- Strength improved by ALLOYING
- Mn: cooking utensils, furniture, roofing
- Cu: truck and plane parts

Aluminum Metal

MAR

Aluminum Metal

Corrosion resistance due to aluminum oxide coating.

 $4~Al(s) + 3~O_2(g) \rightarrow 2~Al_2O_3(s)$ $\Delta H^\circ = -~3351~kJ$

This illustrates the great reducing power of aluminum.

Corrosion of Aluminum

Al is oxidized by Cu²⁺ in a NaCl solution.

Al metal can be oxidized if the protective Al₂O₃ coating is breached.

MAR

MAR

Aluminum Metal

4 Al(s) + 3 O₂(g) → 2 Al₂O₃(s)

 $\Delta H^{\circ} = -3351 \text{ kJ}$

Solid booster rocket fuel for Space Shuttle uses AI as reducing agent and NH₄ClO₄ as oxidizer.

Group 3A Hydrides—Boranes

 $\begin{aligned} & \textbf{Boranes} = \textbf{B}_x \textbf{H}_y \\ & \textbf{Began in 1912 with Alfred} \\ & \textbf{Stock} \end{aligned}$

See Stock's book "Hydrides of Boron and Silicon"

Good account of Hg poisoning from Hg fumes in the lab

Alfred Stock, 1876-1946

MAR

Mercury Poisoning

"Among the unpleasant accidents must be reckoned the fact that, through years of working with mercury apparatus, my collaborators contracted chronic mercurial poisoning. ...[It] reveals itself as an affection of the nerves, causing headaches, numbness, mental lassitude, depression, and loss of memory; such are very disturbing to one engaged in an intellectual occupation."

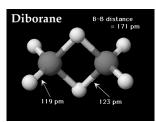
Alfred Stock, "Hydrides of Boron and Silicon", 1933

Diborane, B₂H₆

• 2 NaBH₄ + 2 H₃PO₄ \rightarrow

 $B_2H_6 + 2 NaH_2PO_4 + 2 H_2$

• 2 NaBH₄ + I_2 (in ether) \rightarrow


$$B_2H_6 + 2 \text{ NaI} + H_2$$

- Mp = -165.5 $^{\circ}$ C and Bp = -87.55 $^{\circ}$ C
- $\Delta H_f^\circ = +35.6 \text{ kJ/mol}$
- $B_2H_6 + 3 O_2 --> B_2O_3 + 3 H_2O + 2165 kJ$
- • Higher $\Delta H_{combustion}$ than any other fuel (per gram) than H_2

MAR

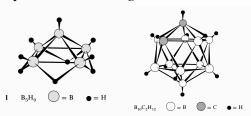
MAR

Diborane Structure

External H-B-H angle = 121.8° Internal H-B-H angle = 96.5°

An "electrondeficient" or "twisted metal" compound

12 valence ebut 8 "apparent" bonds.


3-Center, 2-Electron Bond

2e- spread over 3 orbitals

MAR

HIGHER BORANES

Boranes with more than 2 B atoms can be like spider webs or closed cages.

Commercial Uses of BH Compounds

- Important compound = NaBH₄
- · Used to bleach wood pulp
- Electrode-less plating of metals onto plastics
- $-BH_{4}$ + 8 OH → $H_{2}BO_{3}$ + 5 $H_{2}O$ + 8 e
- $E^{\circ} = +1.24 V$
- · Used as reducing agent in organic chemistry

MAR

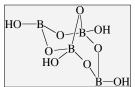
MAR

BNCT Boron Neutron Capture Therapy

- 10B isotope (not 11B) has the ability to capture slow neutrons
- In BNCT, tumor cells preferentially take up a boron compound, and subsequent irradiation by slow neutrons kills the cells via the energetic ¹⁰B --> ⁷Li neutron capture reaction (that produces a photon and an alpha particle)
- $^{10}\text{B} + ^{1}\text{n} \rightarrow ^{7}\text{Li} + ^{4}\text{He} + \text{photon}$

One of the compounds used in BNCT is Na₂[B₁₂H₁₂]. The structure of the B₁₂H₁₂²⁻ anion is a regular polyhedron with 20 sides, called an icosahedron.

Group 3A Hydroxides

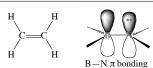

- B(OH)3 is an acid
- $B(OH)_3 + H_2O \rightarrow B(OH)_4 + H^+$
- $-K_a = 7.3 \times 10^{-10}$
- Al(OH)3 and Ga(OH)3 are amphoteric
- Al3+(aq) is a weak acid
- $-Al(H_2O)_6^{3+} \rightarrow [Al(H_2O)_5(OH)]^{2+} + H^+$
- $-K_a = 7.9 \times 10^{-6}$

MAR

Boron-Oxygen Compounds

Boron is never found in nature bonded to any other element than O.

Borax, Na₂B₄O₇•10H₂O



 $Na_{2}[B_{4}O_{5}(OH)_{4}] \cdot H_{2}O$

•Note 6-membered rings
•All borates are
fragments of of this
structure.

MAR

Boron-Nitrogen Compounds

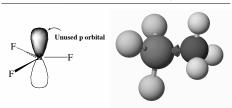
Element	В	C	N
Valence e-	3	4	5
Electroneg.	2.0	2.5	3.0
Radius	88	77	70 pm

MAR

		H
$B_2H_6 + NH_3$	-	H B N H
BCl ₃ + NH ₄ Cl	NaBH ₄	H H H

Borazine—Analog of Benzene

Borazine: Mol. wt. = 80.5 Mp = -57 °C; Bp = 55 °C B—N = 144 pm Benzene: Mol. wt. = 78.1 Mp = 6 °C; Bp = 80 °C C—C = 142 pm


Boron Halides

	Mp,°C	Bp, °C
BF ₃	-127.1	-99.9
BCl ₃	-107	12.5
BBr_3	-46	91.3
BI_3	49.9	210

All are volatile Monomeric - contrast with BX₃ and Al₂X₆

MAR

All Form Lewis Acid-Base Complexes

Order of Lewis acidity: $BF_3 < BCI_3 < BBr_3 < BI_3$

All Form Lewis Acid-Base Complexes

Order of Lewis acidity: $BF_3 < BCI_3 < BBr_3 < BI_3$

Order of acidity is inverse of expectation due to a small degree of $B\!-\!X\,\pi$ bonding

MAR

Aluminum Halides

Compound AIF₃ AICl₃ AIBr₃ AII₃ Mp, °C 1290 192.4 97.8 189.4 Subl. Temp. 1272 180 256 382

Synthesis

 $Al_2O_3 + 6 HF \rightarrow 2 AlF_3 + 3 H_2O$ 2 Al + 3 X₂ \rightarrow 2 AlX₃ (for X = Cl, Br, I) Synthesis of Al₂Br₆

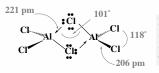
 $2 Al + 3 Br_2 \rightarrow Al_2 Br_6$



MAR

MAR

Aluminum Fluoride



- AlF₃ is a lattice of Al³⁺ and F⁻ ions
- Octahedral Al3+
- F- bridges
- Found in cryolite, Na₂AlF₆

 AIX_3 where X = CI, Br, I

Solid $AlCl_3$ is a layer lattice of 6-coordinate Al^{3+} ions.

At mp the solid volume increases 85% and electrical conductivity decreases

In liquid and gas phase AlCl₃ is dimer. AlBr₃ and AlI₃ are dimers in all phases.

MAR

MAR

Aluminum in Water Purification

Aluminum sulfate is the most important Al compound after $Al(OH)_3$ and Al_2O_3 .

Used in paper industry and as a flocculent in water purification.

As pH increases, associated species form. Their large charge nucleates fine, suspended dirt particles.

$$\begin{bmatrix} \mathsf{OH}_2 \mathsf{O}_4 \mathsf{AI} & \mathsf{OH}_2 \mathsf{O}_4 \\ \mathsf{OH}_2 \mathsf{O}_4 \mathsf{AI} & \mathsf{OH}_2 \mathsf{O}_4 \end{bmatrix}^{4+}$$

Aluminum Hydroxide & Oxide

Many different forms

 α -Al₂O₃ Corundum α -AlO(OH) Diaspore

 α -Al(OH)₃ Bayerite

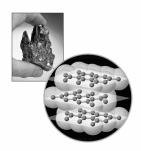
 γ -Al₂O₃

 γ -AlO(OH) Boehmite

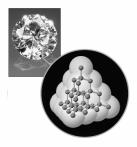
 γ -Al(OH)₃ Gibbsite

Corundum: α -Al₂O₃

- Very hard—so used as an abrasive in sandpaper and toothpaste
- Emery = $Al_2O_3 + Fe_2O_3 / SiO_2$
- · Chemically inert and insulating
- Used in refractories and ceramics $\,$


Group 4A

- · C, Si, Ge, Sn, Pb
- General features
 - Moving away from metallic character
 - ns²np² configurations
 - "inert pair" effect leads to Ge²⁺, Sn²⁺, Pb²⁺


MAR

Carbon Allotropes: Graphite

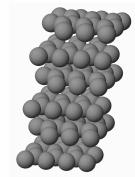
Layers of 6-member carbon rings. sp^2 C atoms Extended π bonding throughout the layers.

Carbon Allotropes: Diamond

6-member carbon rings.
Tetrahedral sp³ C atoms
Bonding extends throughout the crystal.

MAR

MAR


MAR

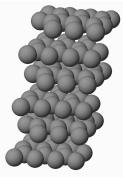
Properties of Graphite and Diamond

Allotrope	Graphite	Diamond
Density	2.266	3.514 g/cm ³
Hardness	<1	10 Mohs
ΔH_{f}°	0	+1.90 kJ/mol

Graphite has high electrical conductivity

Diamond—has highest thermal conductivity of any known material

Graphite


Uses of natural graphite

- · Steelmaking
- · Refractories, crucibles
- · Lubricants
- · Brake linings
- Pencil lead

About 75000 tons/year

MAR

MAR

Graphite

Artificial graphite
SiO₂ + C → (SiC) + CO₂
SiC (2500 °C) → Si + C
Used for electrodes,
crucibles, motor brushes,
fibers
About 350,000 tons/year

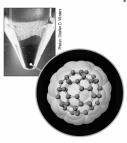
Coke & Carbon Black

- Heat coal in absence of air → coke
- About 370 x 106 tons/year
- Steelmaking
- Carbon black—incomplete combustion of hydrocarbons
- ->10 million tons/day!
- 93% in tires (3 kg in car tire and 9 kg in truck tire)
- -~3% in printing ink

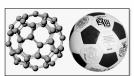
MAR

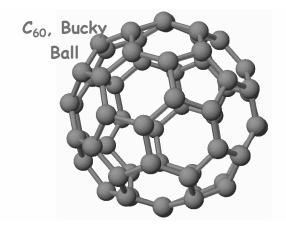
Activated Charcoal

Made by burning carbon in high oxygen atmosphere.


Leaves small holes with diameters of 1-8 nanometers

Surface area of 1 g of charcoal can be about 1000 m^2 .


Used in water and air filters.


Carbon Allotropes: Fullerenes

atoms.

5- and 6-member carbon rings. C atoms are bound into a sphere with 60 C

Current Issues in Chemistry

Screen 3.2

Buckyballs,
AIDS, and
Modern
Chemists discovered one that is very exerting.

Buckyballs are Commisted with an unusual hollow structure similar to a soccer ball's. Simon Friedman at the University of California at San Francisco used computer models to show that a Commistery within the active site of the enzyme IBV protease, an important molecule in the reproduction of the AIDS virus. Friedman and his Ph.d. advisor, Ib. George L. Kenyon, believed that the close fit would obstruct the reproduction of the virus. To test this hybridesis, a water-soluble derivative of Com was needed. A fullerene research group, headed by Br. Fred Wuld at the Commission of the virus and the process of the Commission of the virus of the Ph.d. and later researchers used it to render the virus noninfectious in human cells grown in the laboratory.

MAR

MAR

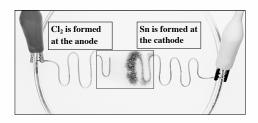
- Quartz or sand + high purity coke → Si
- $-\operatorname{SiO}_2 + 2 \text{ C} \rightarrow \operatorname{Si} + 2 \text{ CO}$
- Making very pure silicon:
- Si + Cl₂ → SiCl₄

MAR

MAR

- $-\operatorname{SiCl_4} + \operatorname{Mg} \ \rightarrow \ \operatorname{MgCl_2} + \operatorname{Si}$
- To purify the silicon, it is zonerefined

Tin, Sn


- Sn is relatively expensive, but used because it resists corrosion.
- About 40% used in "tin plate"
- "Tin cans" have 0.0004 0.025 mm layer of Sn on iron
- About 30 x 109 cans plated annually in US

Tin Alloys

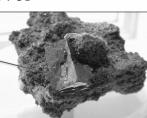
Solder: 1/3 Sn and 2/3 Pb Bronze: 5-10% Sn + Cu

Pewter: 90-95% Sn, 1-8% Sb, and < 3% Cu Bearing metal: 80-90% Sn, 5% Cu, and Pb Tin

Tin metal can be recovered by electrolysis of an aqueous solution of tin(II) chloride.

MAR

Lead, Pb


- Most abundant of the "heavy metals"
- Romans used it in "plumbing"
- the word comes from the Latin name for the element
- Main ore is galena, PbS

Producing Lead

2 PbS + 3 $O_2 \rightarrow$ 2 PbO + 2 SO₂(g) PbO + C \rightarrow Pb + CO

Galena PbS -

MAR

MAR

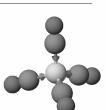
Lead Storage Batteries

About 60% of the batteries sold are Pb storage batteries

Negative plate lead grids fille with spongy le

ANODE:

 $Pb(s) + HSO_4$ $\rightarrow PbSO_4(s) + H+(aq) + 2e-CATHODE$:


 $PbO_2(s) + 3 H^*(aq) + HSO_4(aq) + 2e \rightarrow PbSO_4(s) + 2 H_2O$

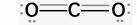
MAR

Carbon-Oxygen Compounds

• CO—used as reducing agent in metal purification

- -the Mond process
- NiO + 4 CO (at 50 $^{\circ}$ C)
 - \rightarrow Ni(CO)₄ (liq)
- Ni(CO)₄ (at 230 $^{\circ}$ C)
 - → pure Ni + 4 CO

Carbon-Oxygen Compounds


 CO_2 — over 30 x 106 tons produced in US/year

- -1/2 used as refrigerant and propellant in aerosols
- 1/4 used to "carbonate" soft drinks

CO2 is a "greenhouse" gas

Silicon-Oxygen Compounds

SiO₂ is not like CO₂

Reason is that 2 Si=O bonds are weaker (~640 kJ each) than 4 Si-O bonds (464 kJ each)

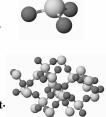
Also orbital overlap to form Si=O is not efficient.

Most common form is alpha-quartz

Less pure forms are rose quartz, smoky quartz, amethyst, citrine.

MAR

MAR


Page III-18-15 / Chapter Eighteen Lecture Notes

Silicon Dioxide

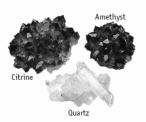
All silicon-oxygen compounds have cornershared SiO₄ tetrahedra

 $\alpha\text{-}Quartz$ has interlinked helical chains of SiO_4 tetrahedra.

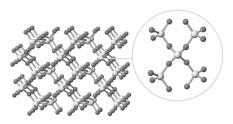
Helices can be right- or lefthanded, so crystals are optically active.

Large SiO₂ crystal

Citrine Quartz


MAR

MAR


Quartz

Quartz is a key electronic material, 2nd only to Si in volume.

Citrine and amethyst have Fe²⁺/Fe³⁺ impurities in quartz that give color.

Quartz

Quartz consists of interlinked chains of ${
m SiO_4}$ units

MAR

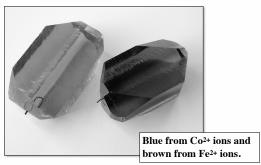
Piezoelectricity

Quartz exhibits the property of piezoelectricity.

The production of an electric dipole when the crystal is deformed.

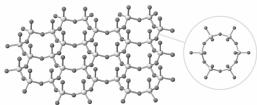
Piezoelectric effect is used to control oscillators in electric circuits such as watches and radios.

Hydrothermal Growth of Quartz


Most quartz used commercially is synthetic At 350-400 °C and 1-4 kilobars, SiO_2 dissolves slightly in 1 M NaOH $3 SiO_2 + 2 OH \rightarrow Si_3O_7^2 + H_2O$ SiO_2 crystallizes on quartz seed crystals.

Hydrothermal Synthesis of Crystals," Robert A. Laudise, Chemical & Engineering News, Vol.65 (39), 30

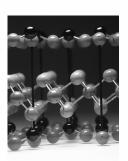
MAR


MAR

Synthetic Quartz

Silicates

 $Silicates \ have \ chains \ of \ SiO_4 \ tetrahedra, of ten \\ linked \ into \ a \ sheet \ structure.$



Sheet structure in mica

MAR

Clays

Clays have sheets of SiO₄ tetrahedra bound to sheets of AlO₆ octahedra. A large variety of clays

Clays

Remedies for stomach upset can contain clays. Clays absorb toxins. The large disk is baked clay from Africa; used medicinally.

MAR

MAR

MAR

Glass

When quartz is melted, it forms silica glass. Add CaO and $Na_2CO_3 \rightarrow$ ordinary glass

See Corning Glass Museum: www.cmog.org

Soda-Lime Glass

Most common type and least expensive 60-75% silica, 12-18% soda, 5-12% lime Poor resistance to sudden temperature changes and to corrosive chemicals

Page III-18-17 / Chapter Eighteen Lecture Notes

Lead Glass

About 20% PbO Relatively soft High refractive index gives it brilliance Used for art glass and electrical applications

Borosilicate Glass

Any silicate glass with at least $5\,\%$ B_2O_3

High resistance to temperature change and chemical corrosion

Pipelines, light bulbs, photochromic glasses, sealed-beam headlights, lab ware, baking ware

MAR

MAR

MAR

Photochromic Glass

Glass contains AgCl and CuCl

Cl + light $\rightarrow Cl$ + e-

Darkening reaction

 $e-+Ag^+ \rightarrow Ag(s)$

Reversing reactions

 $Cl + Cu^+ \rightarrow Cu^{2+} + Cl^-$

 $Cu^{2+} + Ag \rightarrow Cu^{+} + Ag^{+}$

MAR

Colored Glass

- Old glass often colored due to impurities
- Fe²⁺ gives blue-green
- Fe³⁺ gives yellow-green
- Colored glass
- Blue glass: Co2+
- Purple: Mn²⁺
- Fe²⁺ + Cr salts --> green wine bottles
- Fe²⁺ + S --> brown
- U2+: yellow
- Se²: red (as in traffic lights)

Silicones: organosilicon polymers

Silicones

 $2 \text{ CH}_3\text{Cl} + \text{Si} \rightarrow \text{SiCl}_2(\text{CH}_3)_2$

Also produces SiCl₃(CH₃), SiCl (CH₃)₃, and SiCl₄

Patented by E. G. Rochow of GE in 1945

Eugene Rochow

MAR

Silicones

 $(CH_3)_3SiCl + 2 H_2O \rightarrow$

 $(CH_3)_3Si - O - Si(CH_3)_3 + 2HCl$

 $R_2SiCl_2 + 2 H_2O \rightarrow$

 $HO-SiR_2-OH + 2 HCl$

2 HO−SiR₂−OH →

 $HO-SiR_2-O-SiR_2-OH+H_2O$

Units link to give polymers!

Silicones

- Properties of silicones
- Good thermal and oxidative stability
- Resistant to high and low temperatures
- Water repellent
- Antistick and antifoam properties
- Resistant to UV radiation and weathering
- Physiologically inert (*see breast implant studies)
- Can be made into oils, greases, emulsions, elastomers, and resins

MAR

MAR

Silicones

Production of >350,000 tons annually

1000 different products

65-70% fluid silicones

25-30% elastomers

5-10% resins

Silicones: Fluids

Cosmetics — suntan lotion, lipstick

Antifoams - sewage treatment

Antifroth - cooking oil

Car polish

Lubricants Release

agents

MAR

MAR

Silicones: Elastomers

SiO₂ added to linear dimethylpolysiloxane

Retains inertness, flexibility, elasticity, and strength up to 250 $^{\circ}C$ and down to –100 $^{\circ}C.$

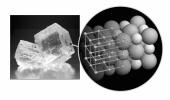
Industrial sealants, belts and gaskets, medical tubing, space suits, etc.

Silicones: Resins

Pure silicone resins are poly(organosiloxanes) with a large proportion of branched siloxyl groups

Used as raw materials for paints, binders and in building preservation.

Electrical industry: insulating lacquers


High temperature enamels

MAR

MAR

Chemistry of Main Group Elements Groups 5A-8

Red and white I

MAR

MAR

Sodium chloride

Group 5A

Nitrogen, phosphorus, arsenic, antimony, and bismuth

N exists as N_2 molecules. Others have more complex forms

Liquid nitrogen

Nitrogen

 N_2 is quite unreactive owing to the NN triple bond.

Atmosphere is about $80\% N_2$

 N_2 easily liquefied. Boils at -196 $^{\rm 0}C_{\rm \cdot}$

Used as a refrigerant

Nitrogen Oxides, N₂O

 $\begin{array}{l}
NH_4NO_3 \\
\rightarrow N_2O + 2 H_2O
\end{array}$

 N_2O , nitrous oxide (dinitrogen oxide), used as an anesthetic. Soluble in fats. Used as

Soluble in fats. Used as propellant in whipped cream cans.

Nitrogen Oxides, NO

NO, nitrogen oxide, is present in polluted air. NO = 11 valence e⁻ Implicated in biological processes Reacts readily with O₂ to give NO₂.

Nitrogen Oxides, NO2

 $\text{HNO}_3 \rightarrow 2 \text{ N}_2\text{O} + \text{H}_2\text{O} + 1/2 \text{ O}_2$

 NO_2 , nitrogen dioxide, is a brown gas in equilibrium with N_2O_4 , a colorless gas.

A common air pollutant

MAR

Oxidation of NH₃

NH₃ gas is oxidized on Pt surface in air to NO $4 \text{ NH}_3 + 5 \text{ O}_2 \rightarrow 4 \text{ NO} + 6 \text{ H}_2\text{O}$ Pt wire catalyzes reaction. Heat of reaction causes wire to glow.

Commercial Prep of HNO₃

NH₃ is oxidized on Pt surface in air to NO and NO₂. NO₂ in water gives HNO₃.

MAR

Nitric Acid, HNO₃

 NO_2 in water gives HNO_3 (and HNO_2) Better prepared from: $2 \ NaNO_3 + H_2SO_4 \rightarrow 2 \ HNO_3 + Na_2SO_4$

MAR

MAR

Nitric Acid, HNO₃

 HNO_3 readily reacts with almost all metals -- except Al -- to give metal nitrate and NO_2

MAR

Phosphorus

Originally prepared from human waste

Now obtained from the reduction of Pcontaining minerals such as Ca₃(PO₄)₂.



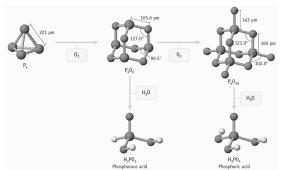
Phosphorus Allotropes

White = P₄ tetrahedron

Red = polymer of P_4 tetrahedra

MAR

Phosphorus Reactions


Yellow phosphorus spontaneously burns in air.

 $P_4(s) + 5 O_2(g) \rightarrow$

 $P_4O_{10}(s)$

Product: tetraphosphorus decaoxide.

Phosphorus Oxides

MAR

Phosphorus Reactions

Phosphorus reacts readily (is oxidized) with chlorine to give PCl₃ and PCl₅.

Phosphorus Reactions

A match head contains an oxidizing agent (KClO₃) and P₄S₃.

The striking strip on a match box contains red P. Redox reaction lights the match.

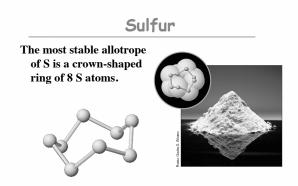
MAR

MAR

MAR

Group 6A Oxygen, Sulfur, Selenium, Tellurium, Polonium

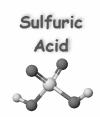
Oxygen Allotropes


Liquid O₂ is paramagnetic and clings to a magnet.

Ozone, O_3 , is made

by passing O₂ through electric discharge.

MAR

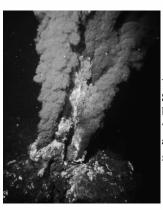


Polymeric Sulfur

Heating S to the melting point causes the rings to open and a polymeric allotrope forms.

MAR

Sulfur is found in pure form in underground deposits along the coast of the U.S. It is recovered by pumping superheated steam into the beds to melt the S.



Sulfuric Acid, H₂SO₄

Sulfur is burned in air to give SO_2 and then SO_3 . SO_3 reacts with water $\rightarrow H_2SO_4$ H_2SO_4 is the chemical produced in the largest amount in the U.S.

MAR

MAR

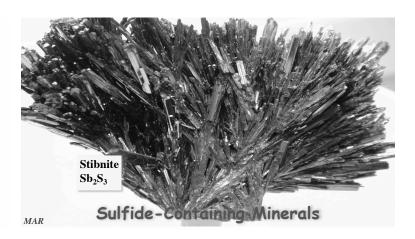
Black Smokers

Vents -- BLACK SMOKERS -- in the bottom of the world's oceans are a source of metal sulfides.

Sulfide-Containing Minerals

MAR

Sulfide-Containing Minerals



FeS, iron pyrite Fool's gold

MAR

MAR

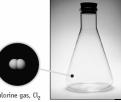
Sulfide-Containing Minerals

Lead sulfide, PbS, galena

Sulfur Oxides

SO₂ is produced by burning sulfur in oxygen.

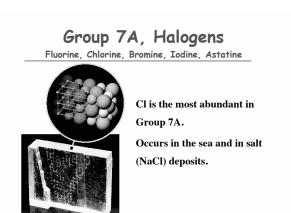
Sulfur Oxides

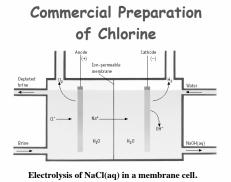

 SO_2 is produced by treatment of metal sulfides with O_2 .

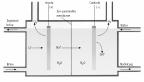
 $2~\rm ZnS~+~3~O_2~\rightarrow~2~\rm ZnO~+~2~SO_2$

Also produced by burning fossil fuels About 2 x 108 tons of sulfur oxides are released into the atmosphere by human activities annually.

Group 7A -- Halogens Fluorine, Chlorine, Bromine, Iodine, Astatine






Diatomic elements: Cl_2 gas, liquid Br_2 , and solid I_2

MAR

Commercial Preparation of Chlorine

Anode: $2 \operatorname{Cl}_2(q) \rightarrow \operatorname{Cl}_2(g) + 2e^{-}$ Cathode: $2 \operatorname{H}_2O(\operatorname{liq}) + 2e^{-}$

 \rightarrow H₂(g) + 2 OH·(aq)

MAR

MAR

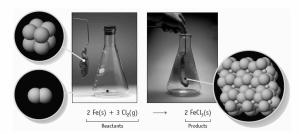
MAR

Lab Preparation of Chlorine

Oxidation of NaCl with strong oxidant $(K_2Cr_2O_7)$ Cl_2 gas bubbles into water.

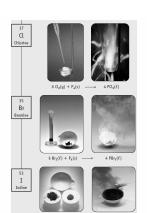
Lab Preparation of Iodine

 $2 \text{ I} + 4 \text{ H} + \text{MnO}_2 \rightarrow \text{Mn}^{2+} + \text{ I}_2 + 2 \text{ H}_2\text{O}$


Reaction of Cl_2 and Na

MAR

MAR


Reaction of Cl₂ and Fe

Reaction of Br₂ and Al

Bromine reacts with metals to give metal bromides

Reactions of Halogens

Halogens react with nonmetals and metals to give covalent or ionic halides.

End of Chapter 18

See.

· Chapter Eighteen Study Guide

Important Equations, Constants, and Handouts from this Chapter:

- · This chapter is intended as a review of the concepts found in CH 221, CH 222 and CH 223.
- If you see something you do not recognize, talk to the instructor!

End of Chapter Problems: Test Yourself

You will need a table of thermodynamic data found in CH 223 Problem Set #5

- Write a balanced chemical equation for the preparation of H₂ (and CO) by the reaction of CH₄ and water. Using a table of thermodynamic data, calculate ΔH°, ΔG°, and ΔS° for this reaction.
 Calcium oxide, CaO, is used to remove SO₂ from power plant exhaust. These two compounds react to give solid CaSO₃. What mass of SO₂ can
- be removed using 1.2 x 10³ kg of CaO?

 Aluminum dissolves readily in hot aqueous NaOH to give the aluminate ion, Al(OH)₄¹, and H₂. Write a balanced equation for this reaction. If you from $H_1(Cr)_1^{2^*}$, and H_2 . What volume (in milliliters) of H_2 gas is produced when the gas is measured at 735 mm Hg and 22.5 °C? The reaction: 2 Al(s) + 2 NaOH(aq) + 6 H₂O(l) \rightarrow 2 Na'(aq) + 2 Al(OH)₄'(aq) + 3 H₂(g) if an electrolytic cell for producing F_2 operates 5.00 x 10³ amps (at 10.0 V), what mass of F_2 can be produced per 24-hour day? Assume the
- conversion of F-1 to F₂ is 100%.

 5. How would you extinguish a sodium fire in the laboratory? What is the worst thing you could do?

MAR

MAR

MAR

End of Chapter Problems: Answers

- ΔH° = 205.9 kJ ,ΔG° = 141.9 kJ, ΔS° = 214.7 J/K
 1.4 x 10⁶ g SO₂
 1.84 x 10⁴ mL
 8.51 x 10⁴ g F₂
 Use an inert dry chemical fire extinguisher do *NOT* pour water on the sodium fire, this would create flammable hydrogen gas!

You will need a table of thermodynamic data found in CH 223 Problem Set #5