PRECIPITATION REACTIONS Chapter 15

Chemistry 223 Professor Michael Russell

MAR

Flashback - Aqueous Salts!

	om the "Soluble is present in a he compound is soluble.	SOLUBLE COMPOUNDS Almost all satts of Na ⁺ , K ⁺ , NH ₄ ⁺ Satts of nitrate, NO ₂ ⁻ chionate, ClO ₂ ⁻ perchionate, ClO ₄ acetate, CH ₂ O ₂		
		EXCEPTIONS		
12	Po/NO.).	Halides of Ag ⁺ , Hg ₂ ²⁺ , Pb ²⁺	Almost all salts of Cl ⁻ , Br ⁻ , I ⁻	
		Fluorides of Mg^{2+} , Ca^{2+} , Sr^{2+} , Ba^{2+} , Pb^{2+}	Compounds containing F-	
Solubic		Sulfates of Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Pb ²⁺	Salts of sulfate, SO42-	
	BaCl ₂ (aq)?	EXCEPTIONS	INSOLUBLE COMPOUNDS	
soluble	/	Salts of NH_4^+ and the alkali metal cations	Most salts of carbonate, CO3 ²⁻ phosphate, PO3 ²⁻ oxalate, C204 ²⁻ chromate, Cr04 ²⁻	
	BaSO₄(aq)?		Most metal sulfides, S ²⁻	
asO ₄ (s)	insoluble, B		Most metal hydroxides and oxides	

Solubility of a Salt

Consider NaCl dissolving in water:

 $NaCl(s) \rightleftharpoons Na^{+}(aq) + Cl^{-}(aq)$

Solubility of NaCl exceeded when solid precipitate does not dissolve

MAR

MAR Last update

Analysis of Silver Group

All salts formed in this experiment are said to be INSOLUBLE

They form when mixing moderately concentrated solutions of the metal ion with chloride ions.

MAR

Lead(II) Chloride

 $PbCl_2(s) \rightleftharpoons Pb^{2+}(aq) + 2 Cl-(aq)$ $K_{sp} = 1.9 \times 10^{-5}$

Solubility of Lead(II) lodide

 $\begin{array}{l} \mbox{Consider Pbl}_2 \mbox{ dissolving in water} \\ \mbox{Pbl}_2(s) \rightleftharpoons \mbox{Pb}^{2*}(aq) \ + \ 2 \ l^{}(aq) \\ \mbox{Calculate } K_{sp} \ \mbox{if solubility} = 0.00130 \ \mbox{M} \\ \mbox{Solution} \end{array}$

Solubility refers to how many moles of solid dissolve per L

1. Solubility = [Pb²⁺] = 1.30 x 10⁻³ M

MAR

Solubility of Lead(II) lodide

Consider Pbl₂ dissolving in water Pbl₂(s) \rightleftharpoons Pb²⁺(aq) + 2 l·(aq) Calculate K_{sp} if solubility = 0.00130 M Solution 1. Solubility = [Pb²⁺] = 1.30 x 10⁻³ M [l·] = 2 x [Pb²⁺] = 2.60 x 10⁻³ M 2. K_{sp} = [Pb²⁺] [l·]² = [Pb²⁺] {2 • [Pb²⁺]}²

= 4 [Pb²⁺]³

Solubility of Lead(II) lodide

 $\begin{array}{l} \mbox{Consider Pbl}_2 \mbox{ dissolving in water} \\ \mbox{Pbl}_2(s) \rightleftharpoons \mbox{Pb}^{2*}(aq) \ + \ 2 \ l^{-}(aq) \\ \mbox{Calculate } K_{sp} \ \mbox{if solubility} = 0.00130 \ \mbox{M} \\ \mbox{Solution} \end{array}$

2. $K_{sp} = 4[Pb^{2+}]^3 = 4(solubility)^3$

 $K_{sp} = 4 (1.30 \times 10^{-3})^3 = 8.79 \times 10^{-9}$

Notice that solubility of $Pbl_2(x)$ and K_{sp} related here by: $K_{sp} = 4x^3$

Solubility and K_{sp} Relations

# cations	<u># anions</u>	K _{sp} and solubility (x)	Examples		
1	1	$\frac{K_{sp} = x^2}{x = (K_{sp})^{1/2}}$	NaCl, SrO, KClO ₃		
1	2	$K_{sp} = 4x^3$ $x = (K_{sp}/4)^{1/3}$	Pbl ₂ , Mg(OH) ₂		
2	1	$K_{sp} = 4x^3$ $x = (K_{sp}/4)^{1/3}$	Na ₂ O, (NH ₄) ₂ SO ₃		
3	1	$K_{sp} = 27x^4$ x = (K_{sp}/27)^{1/4}	Li ₃ P, (NH ₄) ₃ PO ₄		
1	3	$K_{sp} = 27x^4$ x = (K_{sp}/27)^{1/4}	AlBr ₃ , Cr(NO ₃) ₃		
2	3	$K_{sp} = 108x^5$ $x = (K_{sp}/108)^{1/5}$	Fe ₂ O ₃ , Al ₂ (SO ₄) ₃		
3	2	$K_{sp} = 108x^5$ $x = (K_{sp}/108)^{1/5}$	Ti ₃ As ₂ , Mg ₃ (PO ₄) ₂		
See: <u>Solubility Guide</u>					

MAR

Solubility and K_{sp} Relations

Example: What is the solubility of copper(II) phosphate if $K_{sp} = 1.4*10^{-37}$? Answer: Formula = $Cu_3(PO_4)_2$ 3 cations & 2 anions, so $K_{sp} = 108x^5$ $x = (1.4*10^{-37}/108)^{(1/5)} = 1.7*10^{-8} M$

MAR

Precipitating an Insoluble Salt

 $Hg_2Cl_2(s) \rightleftharpoons Hg_2^{2+}(aq) + 2 Cl^{-}(aq)$

 $K_{sp} = 1.1 \times 10^{-18} = [Hg_2^{2+}] [CI^{-}]^2$

If [Hg₂²⁺] = 0.010 M, what [CI-] is req'd to just begin the precipitation of Hg₂Cl₂?

That is, what is the maximum [CI-] that can be in solution with 0.010 M Hg_2^{2+} without forming Hg_2CI_2 ?

MAR

Precipitating an Insoluble Salt

 $Hg_2Cl_2(s) \rightleftharpoons Hg_2{}^{2+}(aq) + 2 Cl{}^{-}(aq)$

 $K_{sp} = 1.1 \times 10^{-18} = [Hg_2^{2+}] [CI^{-}]^2$

Solution

[CI-] that can exist when $[Hg_2^{2+}] = 0.010$ M:

$$[Cl^{-}] = \sqrt{\frac{K_{sp}}{0.010}} = 1.0 \text{ x } 10^{-8} \text{ M}$$

If this conc. of CI⁻ is just exceeded, Hg₂CI₂ begins to precipitate.

MAR

Precipitating an Insoluble Salt

 $Hg_2Cl_2(s) \rightleftharpoons Hg_2^{2+}(aq) + 2 Cl^{-}(aq)$

 $K_{sp} = 1.1 \times 10^{-18}$ Now raise [CI-] to 1.0 M when $[Hg_2^{2^+}] = 0.010$ M. What is the value of $[Hg_2^{2^+}]$ at this point?

Solution

 $[Hg_2^{2+}] = K_{sp} / [CI-]^2$

 $= K_{sp} / (1.0)^2 = 1.1 \times 10^{-18} M$

The concentration of Hg₂²⁺ has been reduced by 10¹⁶!

The Common Ion Effect

Adding an ion "common" to an equilibrium causes the equilibrium to shift back to reactant.

Common Ion Effect Adding an Ion "Common" to an Equilibrium

The Common Ion Effect

Calculate the solubility of BaSO₄ in (a) pure water and (b) in 0.010 M Ba(NO₃)₂. K_{sp} for BaSO₄ = 1.1 x 10⁻¹⁰ = [Ba²⁺] [SO₄²⁻] $BaSO_4(s) \rightleftharpoons Ba^{2+}(aq) + SO_4^{2-}(aq)$ Solution: (part a) Solubility in pure water = [Ba²⁺] = [SO₄²⁻] = x $K_{sp} = [Ba^{2+}] [SO_4^{2-}] = x^2$ $x = (K_{sp})^{1/2} = 1.0 \times 10^{-5} M$ Note 1:1 ratio of cation to anion: $K_{sp} = x^2$

MAR

The Common Ion Effect

Calculate the solubility of BaSO₄ in (a) pure water and (b) in 0.010 M Ba(NO₃)₂. K_{sp} for BaSO₄ = 1.1 x 10⁻¹⁰ = [Ba²⁺] [SO₄²⁻] $BaSO_4(s) \rightleftharpoons Ba^{2+}(aq) + SO_4^{2-}(aq)$ Solution: (part b)

So... Solubility in pure water = 1.0 x 10⁻⁵ mol/L. Now dissolve BaSO₄ in water already containing 0.010 M Ba2+.

Which way will the "common ion" shift the ____ Will solubility of BaSO₄ be less equilibrium? than or greater than in pure water?____

The Common Ion Effect

Calculate the solubility of BaSO₄ in (a) pure water and (b) in 0.010 M Ba(NO₃)₂. K_{sp} for BaSO₄ = 1.1 x 10⁻¹⁰ = [Ba²⁺] [SO₄²⁻] $BaSO_4(s) \rightleftharpoons Ba^{2+}(aq) + SO_4^{2-}(aq)$ Solution: (part b)

[Ba2+] initial

[SO42-]

change equilib.

MAR

The Common Ion Effect

Calculate the solubility of BaSO₄ in (a) pure water and (b) in 0.010 M Ba(NO₃)₂. K_{sp} for BaSO₄ = 1.1 x 10⁻¹⁰ = [Ba²⁺] [SO₄²⁻] $BaSO_4(s) \rightleftharpoons Ba^{2+}(aq) + SO_4^{2-}(aq)$ Solution: (part b)

 $K_{sp} = [Ba^{2+}] [SO_4^{2-}] = (0.010 + y) (y)$ Because y < 1.0 x 10⁻⁵ M (= x, the solubility in pure water), this means 0.010 + y is about equal to 0.010. Therefore, $K_{sp} = 1.1 \times 10^{-10} = (0.010)(y)$

y = 1.1 x 10⁻⁸ M = solubility in presence of added , Ba²⁺ ion.

The Common Ion Effect

Calculate the solubility of BaSO₄ in (a) pure water and (b) in 0.010 M Ba(NO₃)₂. K_{sp} for BaSO₄ = 1.1 x 10⁻¹⁰ = [Ba²⁺] [SO₄²⁻] $BaSO_4(s) \rightleftharpoons Ba^{2+}(aq) + SO_4^{2-}(aq)$ Solution:

Solubility in pure water = x = 1.0 x 10-5 M Solubility in presence of added Ba2+ = 1.1 x 10⁻⁸ M

Le Chatelier's Principle is followed! See: Solubility Guide

Separating Metal Ions Cu²⁺, Ag⁺, Pb²⁺

A P P

	K _{sp} Values		
gCl	1.8 x 10 ⁻¹⁰		
bCl ₂	1.7 x 10⁻⁵		
bCrO ₄	1.8 x 10 ⁻¹⁴		

MAR

Separating Salts by Differences in K_{sp}

A solution contains 0.020 M Ag⁺ and 0.020 M Pb²⁺. Add CrO₄²⁻ to precipitate red Ag₂CrO₄ and yellow PbCrO₄. Which precipitates first? K_{sp} for Ag₂CrO₄ = 9.0 x 10⁻¹² = [Ag⁺]² [CrO₄²⁻] K_{sp} for PbCrO₄ = 1.8 x 10⁻¹⁴ = [Pb²⁺] [CrO₄²⁻] Solution

The substance whose K_{sp} is first exceeded precipitates first.

The ion requiring the lesser amount of CrO_4^{2-} ppts. first.

MAR

Separating Salts by Differences in K_{sp}

A solution contains 0.020 M Ag⁺ and 0.020 M Pb²⁺. Add CrO₄²⁻ to precipitate red Ag₂CrO₄ and yellow PbCrO₄. Which precipitates first? K_{sp} for Ag₂CrO₄ = 9.0 x 10⁻¹² = [Ag⁺]² [CrO₄²⁻] K_{sp} for PbCrO₄ = 1.8 x 10⁻¹⁴ = [Pb²⁺] [CrO₄²⁻] Solution - Calculate [CrO₄²⁻] required by each ion

> [CrO₄²⁻] to ppt. Ag₂CrO₄ = K_{sp} / [Ag⁺]² = 9.0 x 10⁻¹² / (0.020)² = 2.3 x 10⁻⁸ M [CrO₄²⁻] to ppt. PbCrO₄ = K_{sp} / [Pb²⁺] = 1.8 x 10⁻¹⁴ / 0.020 = 9.0 x 10⁻¹³ M PbCrO₄ precipitates first.

MAR

Separating Salts by Differences in K_{sp}

A solution contains 0.020 M Ag⁺ and 0.020 M Pb²⁺. Add CrO_4^{2-} to precipitate red Ag₂CrO₄ and yellow PbCrO₄. PbCrO₄ ppts. first.

K_{sp} (Ag₂CrO₄)= 9.0 x 10⁻¹² = [Ag⁺]² [CrO₄²⁻] K_{sp} (PbCrO₄) = 1.8 x 10⁻¹⁴ = [Pb²⁺] [CrO₄²⁻]

How much Pb^{2+} remains in solution when Ag^+ begins to precipitate (at 2.3 x 10⁻⁸ M)?

Solution

We know that $[CrO_4^{2-}] = 2.3 \times 10^{-8}$ M to begin to precipitate Ag₂CrO₄. What is the Pb²⁺ conc. at this point? Separating Salts by Differences in K_{sp}

A solution contains 0.020 M Ag⁺ and 0.020 M Pb²⁺. Add CrO_4^{2-} to precipitate red Ag₂CrO₄ and yellow PbCrO₄.

$$\begin{split} & \mathsf{K}_{sp} \left(\mathsf{Ag}_2 \mathsf{CrO}_4 \right) = 9.0 \times 10^{-12} = [\mathsf{Ag}^+]^2 \left[\mathsf{CrO}_4^{2-} \right] \\ & \mathsf{K}_{sp} \left(\mathsf{PbCrO}_4 \right) = 1.8 \times 10^{-14} = [\mathsf{Pb}^{2+}] \left[\mathsf{CrO}_4^{2-} \right] \\ & \textit{How much Pb}^{2+} \textit{ remains in solution when } \mathsf{Ag}^+ \textit{ begins to precipitate (at 2.3 \times 10^{-8} M)?} \\ & \textit{solution} \end{split}$$

 $[Pb^{2+}] = K_{sp} / [CrO_4^{2-}] = 1.8 \times 10^{-14} / 2.3 \times 10^{-8} M$ = 7.8 x 10⁻⁷ M Lead ion has dropped from 0.020 M to < 10⁻⁶ M

Formation Constants

Complex lons are systems with Lewis bases connected around the (Lewis) acidic metal center.

Examples: Zn(NH₃)₄²⁺, Ag(CN)₂⁻¹

Can write a Formation Constant, K_f

Ag⁺(aq) + 2 CN⁻¹(aq) \implies Ag(CN)₂⁻¹(aq), and

$$K_{f} = \frac{[Ag(CN)_{2}^{-1}]}{[Ag^{+}][CN^{-1}]^{2}} = 5.6 \times 10^{18}$$

K_f values usually quite large (product-favored) and product is always the complex ion

Formation Constants (K_f) at 25 °C

		Example:			
Ag⁺(aq)	+	2 CN-1(aq)	╤⇒	Ag(CN) ₂ -1(aq)	

- · ions are reactants
- complex ion is product
- · usually written as net ionic reactions

Formation Constants

Complex lons can be helpful when dissolving solids. Ex: AgCl(s) and Ag(NH₃)₂*(aq) $AgCl(s) \rightleftharpoons Ag^{+}(aq) + Cl^{-}(aq)$ Ksp

 $Ag^{+}(aq) + 2 NH_{3}(aq) \rightleftharpoons Ag(NH_{3})_{2}^{+}(aq)$ Kf

 $AgCl_{(s)}$ + 2 $NH_3 \rightleftharpoons Ag(NH_3)_2$ + $Cl^ K_{net} = K_{sp} \star K_f$

See

MAR

- · Chapter Fifteen Study Guide
- Chapter Fifteen Concept Guide
- Types of Equilibrium Constants
- Solubility Guide
- · Important Equations (following this slide)
- · End of Chapter Problems (following this slide)

K

3.0×10²⁰

 1.7×10^{7} 4.7×10^{13}

 4×10^{19}

 3×10^{33}

 4×10^{18}

 1×10^{6}

 5×10^{9}

8.0×10²⁹

5.6×10¹¹

 3×10^{35}

 4.0×10^{43}

9.3×10³⁸

 2.0×10^{8}

 8×10^{13}

 $3 \times 10^{25} \\ 4.2 \times 10^{19}$

 7.8×10^{8} 3×10^{15}

Complex Ion

Ag(CN)₂

Ag(NH₃)₂

 $Ag(S_2O_3)_2^3$ AlF_6^{3-}

Al(OH)4

Be(OH)₄²

 $Co(OH)_4^{2-}$ $Cr(OH)_4^{-}$

Cu(NH₃)₄²⁺

Fe(CN),

Fe(CN)₆

Hg(CN)4

Pb(OH)3

Sn(OH)3 Zn(CN).

Zn(NH₃)₄²⁺

Zn(OH)4

Ni(NH₃)₆²

CdI42

End of Chapter 15

MAR

End of Chapter Problems: Test Yourself

- Predict whether each of the following is insoluble or soluble in water: (NH₄)₂CO₃, ZnSO₄, NiS, BaSO₄
- When 1.55 g of solid thallium(I) bromide is added to 1.00 L of water, the salt dissolves to a small extent: TIBr(s) \implies TI+(aq) + Br-1(aq) The thallium(I) and bromide ions in equilibrium with TIBr each have a 2.
- 3.
- thallium(I) and bromide ions in equilibrium with TIBr each have a concentration of 1.9 x 10³ M. What is the value of K_{ep} for TIBr? You add 0.979 g of Pb(OH)₂ to 1.00 L of pure water at 25 °C. The pH is 9.15. Estimate the value of K_{ep} for Tb(OH)₂. Estimate the solubility of calcium fluoride, CaF₂ (a) in moles per liter and (b) in grams per liter of pure water. CaF₂(a) \Longrightarrow Ca^{2*}(ag) + 2 F⁻¹(ag) K_{ep} = 5.3 x 10⁻¹¹ The K_{ep} value for radium sulfate, RaSO₄, is 3.7 x 10⁻¹¹. If 0.25 mg of radium sulfate is placed in 1.00 x 10² mL of water, does all of it dissolve? 4.
- 5.
- If not, how much dissolves? $RaSO_4(s) \longrightarrow Ra^{2*}(aq) + SO_4^{-2}(aq)$ Which compound is more soluble: $PbCl_2$ ($K_{sp} = 1.7 \times 10^{-5}$) or $PbBr_2$ ($K_{sp} =$ 6. 6 6 x 10-6)?

$$K_{f} = \frac{[Ag(CN)_{2}^{-1}]}{[Ag^{+}][CN^{-1}]^{2}} = 5.6 * 10^{10}$$

Solubility: Common ion effect, separating salts by differences in solubility Handouts • Types of Equilibrium Constants · Solubility Guide

MAR

MAR

End of Chapter Problems: Answers

- 1. (NH₄)₂CO₃ & ZnSO₄ (soluble), NIS & BaSO₄ (insoluble) 2. $K_{sp} = 3.6 \times 10^{-6}$ 3. $K_{sp} = 1.4 \times 10^{-15}$ 4. a) 2.4 x 10⁻⁴ M b) 0.018 g/L 5. 0.05 mg does not dissolve 6. PbCl₂