PRECIPITATION REACTIONS Chapter 15 **Chemistry 223 Professor Michael Russell** # Flashback - Aqueous Salts! MAR Last update ## Solubility of a Salt Consider NaCl dissolving in water: $NaCl(s) \rightleftharpoons Na^+(aq) + Cl^-(aq)$ Solubility of NaCl exceeded when solid precipitate does not dissolve Pb²⁺ Hg₂²⁺ Ag¹ AgCI PbCl₂ Hg₂Cl₂ Most metal hydroxides and oxid MAR Analysis of Silver Group All salts formed in this experiment are said to be INSOLUBLE They form when mixing moderately concentrated solutions of the metal ion with chloride ions. MAR MAR Hg₂²⁴ AgCI PbCl₂ Hg₂Cl₂ Analysis of Silver Group Although all salts formed in this experiment are said to be insoluble, they do dissolve to some SLIGHT extent. $AgCl(s) \rightleftharpoons Ag^{+}(aq) + Cl^{-}(aq)$ When equilibrium has been established, no more AgCI dissolves and the solution is SATURATED. Hg₂²⁺ AgCI PbCl₂ Hg₂Cl₂ Analysis of Silver Group $AgCl(s) \rightleftharpoons Ag^{+}(aq) + Cl^{-}(aq)$ When solution is SATURATED, expt. shows that $[Ag^{+}] = 1.67 \times 10^{-5} M.$ This is equivalent to the SOLUBILITY of AgCI. What is [CI-]? This is also equivalent to the AgCl solubility, so $[CI-] = 1.67 \times 10^{-5} M$ MAR Ag⁺ Pb²⁺ Hg₂²⁺ AgCl PbCl₂ Hg₂Cl₂ Analysis of Silver Group AgCl(s) \rightleftharpoons Ag⁺(aq) + Cl⁻(aq) Saturated solution has [Ag⁺] = [Cl⁻] = 1.67 x 10⁻⁵ M Use this to calculate K_c K_c = [Ag⁺] [Cl⁻] = (1.67 x 10⁻⁵)(1.67 x 10⁻⁵) This type of K_c is the product of "solubilities", we call it $K_{sp} = solubility$ product constant See: Solubility Guide MAR Some Common, Slightly Soluble Compounds and Their $K_{\rm sp}$ Values* | Formula | Name | K _{sp} (25 °C) | Common Names/Uses | | |---------------------------------------|-------------------------|-------------------------|--|--| | CaCO ₃ Calcium carbonate 3 | | 3.4×10^{-9} | Calcite, Iceland spar | | | MnCO ₃ | Manganese(II) carbonate | 2.3×10^{-11} | Rhodochrosite (forms rose-colored
crystals) | | | FeCO ₃ | Iron(II) carbonate | 3.1×10^{-11} | Siderite | | | CaF ₂ | Calcium fluoride | 5.3×10^{-11} | Fluorite (source of HF and other
inorganic fluorides) | | | AgCl | Silver chloride | 1.8×10^{-10} | Chlorargyrite | | | AgBr | Silver bromide | 5.4×10^{-13} | Used in photographic film | | | CaSO ₄ | Calcium sulfate | 4.9×10^{-5} | Hydrated form is commonly
called gypsum | | | BaSO ₄ | Barium sulfate | 1.1×10^{-10} | Barite (used in "drilling mud" and as a component of paints) | | | SrSO ₄ | Strontium sulfate | 3.4×10^{-7} | Celestite | | | Ca(OH) ₂ | Calcium hydroxide | 5.5×10^{-5} | Slaked lime | | *The values reported in this table were taken from Lange's Handbook of Chemistry, 15th Edition, McGraw Hill Publishers, New York, NY (1999). Additional K_{ip} values are given in Appendix J. = 2.79 x 10⁻¹⁰ ## Lead(II) Chloride PbCl₂(s) \rightleftharpoons Pb²⁺(aq) + 2 Cl·(aq) K_{sp} = 1.9 x 10⁻⁵ MAR MAR ## Solubility of Lead(II) lodide Consider Pbl₂ dissolving in water Pbl₂(s) \rightleftharpoons Pb²⁺(aq) + 2 l·(aq) Calculate K_{sp} if solubility = 0.00130 M Solution Solubility refers to how many moles of solid dissolve per L I. Solubility = $[Pb^{2+}]$ = 1.30 x 10-3 M $[I-] = 2 \times [Pb^{2+}] = 2.60 \times 10^{-3} M$ ## Solubility of Lead(II) lodide Consider Pbl_2 dissolving in water $Pbl_2(s) \rightleftharpoons Pb^{2+}(aq) + 2 l\cdot(aq)$ Calculate K_{sp} if solubility = 0.00130 M Solution 1. Solubility = [Pb²⁺] = 1.30 x 10⁻³ M $[I-] = 2 \times [Pb^{2+}] = 2.60 \times 10^{-3} M$ 2. $K_{sp} = [Pb^{2+}][I-]^2$ = [Pb²⁺] {2 • [Pb²⁺]}² = 4 [Pb²⁺]³ ## Solubility of Lead(II) lodide Consider Pbl₂ dissolving in water Pbl₂(s) \rightleftharpoons Pb²⁺(aq) + 2 l-(aq) Calculate K_{sp} if solubility = 0.00130 M Solution 2. $K_{sp} = 4[Pb^{2+}]^3 = 4(solubility)^3$ $K_{sp} = 4 (1.30 \times 10^{-3})^3 = 8.79 \times 10^{-9}$ Notice that solubility of $Pbl_2(x)$ and K_{sp} related here by: $K_{sp} = 4x^3$ MAR MAR ## Solubility and K_{sp} Relations | # cations | # anions | K_{sp} and solubility (x) | <u>Examples</u> | |-----------|----------|--|--| | 1 | 1 | $K_{sp} = x^2$ | NaCl, SrO,
KClO₂ | | 1 | 2 | $X = (K_{sp})^{1/2}$
$K_{sp} = 4x^3$ | Pbl ₂ , | | 2 | 1 | $x = (K_{sp}/4)^{1/3}$
$K_{sp} = 4x^3$ | Mg(OH)₂
Na₂O, | | 3 | 1 | $x = (K_{sp}/4)^{1/3}$
$K_{sp} = 27x^4$ | (NH ₄) ₂ SO ₃
Li ₃ P, | | | 3 | $X = (K_{sp}/27)^{1/4}$ | (NH ₄) ₃ PO ₄ | | | | $K_{sp} = 27x^4$
$x = (K_{sp}/27)^{1/4}$ | Cr(NO ₃) ₃ | | 2 | 3 | $K_{\rm sp} = 108 x^5$
$x = (K_{\rm sp}/108)^{1/5}$ | Fe ₂ O ₃ ,
Al ₂ (SO ₄) ₃ | | 3 | 2 | $K_{sp} = 108x^5$
$x = (K_{sp}/108)^{1/5}$ | Ti ₃ As ₂ ,
Mg ₃ (PO ₄) ₂ | See: Solubility Guide Solubility and K_{sp} Relations Example: What is the solubility of copper(II) phosphate if $K_{sp} = 1.4*10^{-37}$? Answer: Formula = $Cu_3(PO_4)_2$ 3 cations & 2 anions, so $K_{sp} = 108x^5$ x = $(1.4*10^{-37}/108)^{(1/5)} = 1.7*10^{-8}$ M Example: What is K_{sp} for magnesium carbonate if the solubility at 25 °C is 2.6*10-3 M? Answer: Formula = $MgCO_3$, 1 cation & 1 anion, so $K_{sp} = x^2$ $K_{sp} = (2.6*10^{-3})^2 = 6.8*10^{-6}$ MAR MAR ## Precipitating an Insoluble Salt $Hg_2CI_2(s) \rightleftharpoons Hg_2^{2+}(aq) + 2 CI-(aq)$ $K_{sp} = 1.1 \times 10^{-18} = [Hg_2^{2+}] [CI^{-}]^2$ If $[Hg_2^{2+}] = 0.010 \text{ M}$, what [CI-] is req'd to just begin the precipitation of Hg_2CI_2 ? That is, what is the maximum [CI-] that can be in solution with 0.010 M Hg_2^{2+} without forming Hg_2CI_2 ? MAR Precipitating an Insoluble Salt $Hg_2Cl_2(s) \rightleftharpoons Hg_2^{2+}(aq) + 2 Cl-(aq)$ $K_{sp} = 1.1 \times 10^{-18} = [Hg_2^{2+}] [CI-]^2$ Solution [CI-] that can exist when $[Hg_2^{2+}] = 0.010 M$: $$[Cl^{-}] = \sqrt{\frac{K_{sp}}{0.010}} = 1.0 \times 10^{-8} M$$ If this conc. of CI⁻ is just exceeded, Hg₂CI₂ begins to precipitate. ### **Precipitating an Insoluble Salt** $Hg_2Cl_2(s) \rightleftharpoons Hg_2^{2+}(aq) + 2 Cl-(aq)$ $K_{sp} = 1.1 \times 10^{-18}$ Now raise [Cl-] to 1.0 M when $[Hg_2^{2+}]$ = 0.010 M. What is the value of $[Hg_2^{2+}]$ at this point? Solution $[Hg_2^{2+}] = K_{sp} / [CI^2]^2$ = $K_{sp} / (1.0)^2 = 1.1 \times 10^{-18} M$ The concentration of Hg₂²⁺ has been reduced by 10¹⁶! #### The Common Ion Effect Adding an ion "common" to an equilibrium causes the equilibrium to shift back to reactant. MAR #### Common Ion Effect Adding an Ion "Common" to an Equilibrium MAR #### The Common Ion Effect Calculate the solubility of BaSO₄ in (a) pure water and (b) in 0.010 M Ba(NO₃)₂. K_{sp} for BaSO₄ = 1.1 x 10⁻¹⁰ = [Ba²⁺] [SO₄²⁻] $BaSO_4(s) \rightleftharpoons Ba^{2+}(aq) + SO_4^{2-}(aq)$ Solution: (part a) Solubility in pure water = $[Ba^{2+}] = [SO_4^{2-}] = x$ $K_{sp} = [Ba^{2+}][SO_4^{2-}] = x^2$ $x = (K_{sp})^{1/2} = 1.0 \times 10^{-5} M$ Note 1:1 ratio of cation to anion: $K_{sp} = x^2$ The Common Ion Effect Calculate the solubility of BaSO₄ in (a) pure water and (b) in 0.010 M Ba(NO₃)₂. K_{sp} for BaSO₄ = 1.1 x 10⁻¹⁰ = [Ba²⁺] [SO₄²⁻] BaSO₄(s) \rightleftharpoons Ba²⁺(aq) + SO₄²⁻(aq) Solution: (part b) So... Solubility in pure water = 1.0×10^{-5} mol/L. Now dissolve BaSO₄ in water already containing 0.010 M Ba²⁺. Which way will the "common ion" shift the equilibrium? ___ Will solubility of BaSO₄ be less than or greater than in pure water?__ MAR The Common Ion Effect Calculate the solubility of BaSO₄ in (a) pure water and (b) in 0.010 M Ba(NO₃)₂. K_{sp} for BaSO₄ = 1.1 x 10⁻¹⁰ = [Ba²⁺] [SO₄²⁻] $BaSO_4(s) \rightleftharpoons Ba^{2+}(aq) + SO_4^{2-}(aq)$ Solution: (part b) [Ba²⁺] [SO₄²-] initial change equilib. MAR MAR ### The Common Ion Effect Calculate the solubility of BaSO₄ in (a) pure water and (b) in 0.010 M Ba(NO₃)₂. K_{sn} for BaSO₄ = 1.1 x 10⁻¹⁰ = [Ba²⁺] [SO₄²⁻] $BaSO_4(s) \rightleftharpoons Ba^{2+}(aq) + SO_4^{2-}(aq)$ Solution: (part b) $K_{sp} = [Ba^{2+}][SO_4^{2-}] = (0.010 + y)(y)$ Because y < 1.0 x 10^{-5} M (= x, the solubility in pure water), this means 0.010 + y is about equal to 0.010. Therefore, $K_{sp} = 1.1 \times 10^{-10} = (0.010)(y)$ $y = 1.1 \times 10^{-8} M = solubility$ in presence of added Ba^{2+} ion. The Common Ion Effect Calculate the solubility of BaSO₄ in (a) pure water and (b) in 0.010 M Ba(NO₃)₂. K_{sn} for BaSO₄ = 1.1 x 10⁻¹⁰ = [Ba²⁺] [SO₄²⁻] $BaSO_4(s) \rightleftharpoons Ba^{2+}(aq) + SO_4^{2-}(aq)$ Solution: Solubility in pure water = $x = 1.0 \times 10^{-5} M$ Solubility in presence of added Ba²⁺ $= 1.1 \times 10^{-8} M$ Le Chatelier's Principle is followed! See: Solubility Guide MAR #### Separating Metal Ions Cu²⁺, Ag⁺, Pb²⁺ K_{sp} Values AgCl 1.8 x 10⁻¹⁰ PbCl₂ 1.7 x 10⁻⁵ PbCrO₄ 1.8 x 10⁻¹⁴ MAR ### Separating Salts by Differences in K_{sp} A solution contains 0.020 M Ag⁺ and 0.020 M Pb²⁺. Add CrO₄²⁻ to precipitate red Ag₂CrO₄ and yellow PbCrO₄. Which precipitates first? K_{sp} for $Ag_2CrO_4 = 9.0 \times 10^{-12} = [Ag^+]^2 [CrO_4^{2-}]$ K_{sp} for $PbCrO_4 = 1.8 \times 10^{-14} = [Pb^{2+}] [CrO_4^{2-}]$ Solution The substance whose K_{sp} is first exceeded precipitates first. The ion requiring the lesser amount of CrO₄²⁻ ppts. first. MAR MAR #### Separating Salts by Differences in K_{sp} A solution contains 0.020 M Ag $^+$ and 0.020 M Pb $^{2+}$. Add CrO $_4$ $^{2-}$ to precipitate red Ag $_2$ CrO $_4$ and yellow PbCrO $_4$. Which precipitates first? K_{sp} for $Ag_2CrO_4 = 9.0 \times 10^{-12} = [Ag^+]^2 [CrO_4^2 \cdot]$ K_{sp} for PbCrO₄ = 1.8 x 10⁻¹⁴ = [Pb²⁺] [CrO₄²·] Solution - Calculate [CrO₄²⁻] required by each ion $$\begin{split} &[\text{CrO}_4^{2\text{-}}] \text{ to ppt. } \text{Ag}_2\text{CrO}_4 = \text{K}_{sp} \ / \ [\text{Ag}^+]^2 \\ &= 9.0 \ \text{x} \ 10^{-12} \ / \ (0.020)^2 = 2.3 \ \text{x} \ 10^{-8} \ \text{M} \\ &[\text{CrO}_4^{2\text{-}}] \text{ to ppt. } \text{PbCrO}_4 = \text{K}_{sp} \ / \ [\text{Pb}^{2\text{+}}] \\ &= 1.8 \ \text{x} \ 10^{-14} \ / \ 0.020 = 9.0 \ \text{x} \ 10^{-13} \ \text{M} \\ & \text{PbCrO}_4 \ \text{precipitates first.} \end{split}$$ #### Separating Salts by Differences in K_{sp} A solution contains 0.020 M Ag⁺ and 0.020 M Pb²⁺. Add CrO₄²⁻ to precipitate red Ag₂CrO₄ and yellow PbCrO₄. PbCrO₄ ppts. first. $K_{sp} (Ag_2CrO_4) = 9.0 \times 10^{-12} = [Ag^+]^2 [CrO_4^{2-}]$ $K_{sp} (PbCrO_4) = 1.8 \times 10^{-14} = [Pb^{2+}] [CrO_4^{2-}]$ How much Pb²⁺ remains in solution when Ag⁺ begins to precipitate (at 2.3 x 10⁻⁸ M)? Solution We know that $[CrO_4^{2-}] = 2.3 \times 10^{-8} M$ to begin to precipitate Ag_2CrO_4 . What is the Pb2+ conc. at this point? Separating Salts by Differences in K_{sp} A solution contains 0.020 M Ag⁺ and 0.020 M Pb²⁺. Add CrO₄²⁻ to precipitate red Ag₂CrO₄ and yellow PbCrO₄. K_{sp} (Ag₂CrO₄)= 9.0 x 10⁻¹² = [Ag⁺]² [CrO₄²⁻] K_{sp} (PbCrO₄) = 1.8 x 10⁻¹⁴ = [Pb²⁺] [CrO₄²⁻] How much Pb²⁺ remains in solution when Ag+ begins to precipitate (at 2.3 x 10-8 M)? $[Pb^{2+}] = K_{sp} / [CrO_4^{2-}] = 1.8 \times 10^{-14} / 2.3 \times 10^{-8} M$ = 7.8 x 10⁻⁷ M Lead ion has dropped from 0.020 M to < 10-6 M MAR #### **Formation Constants** Complex lons are systems with Lewis bases connected around the (Lewis) acidic metal center. Examples: Zn(NH₃)₄²⁺, Ag(CN)₂-1 Can write a Formation Constant, K_f $Ag^+(aq) + 2 CN^{-1}(aq) \rightleftharpoons Ag(CN)_2^{-1}(aq)$, and $$K_{\rm f} = \frac{[Ag(CN)_2^{-1}]}{[Ag^+][CN^{-1}]^2} = 5.6*10^{18}$$ K_f values usually quite large (product-favored) and product is always the complex ion #### Formation Constants (K_f) at 25 °C | | Complex Ion | K_{f} | |-----|-----------------------------------|----------------------| | | Ag(CN) ₂ - | 3.0×10^{20} | | | $Ag(NH_3)_2^+$ | 1.7×10^{7} | | | $Ag(S_2O_3)_2^{3-}$ | 4.7×10^{13} | | | AlF_6^{3-} | 4×10^{19} | | | $Al(OH)_4$ | 3×10^{33} | | | Be(OH) ₄ ²⁻ | 4×10^{18} | | | CdI_4^{2-} | 1×10^{6} | | | Co(OH) ₄ ²⁻ | 5 ×10 ⁹ | | | Cr(OH) ₄ | 8.0×10^{29} | | | $Cu(NH_3)_4^{2+}$ | 5.6×10^{11} | | | Fe(CN) ₆ ⁴⁻ | 3×10^{35} | | | Fe(CN) ₆ ³⁻ | 4.0×10^{43} | | | Hg(CN) ₄ ²⁻ | 9.3×10^{38} | | | $Ni(NH_3)_6^{2+}$ | 2.0×10^{8} | | | Pb(OH) ₃ | 8×10^{13} | | | Sn(OH) ₃ | 3×10^{25} | | | $Zn(CN)_4^{2-}$ | 4.2×10^{19} | | | $Zn(NH_3)_4^{2+}$ | 7.8×10^{8} | | MAR | $Zn(OH)_4^{2-}$ | 3×10^{15} | Example: $Ag^{+}(aq) + 2 CN^{-1}(aq) \rightleftharpoons Ag(CN)_2^{-1}(aq)$ - · ions are reactants - · complex ion is product - · usually written as net ionic reactions ## **Formation Constants** Complex lons can be helpful when dissolving solids. Ex: AgCl(s) and Ag(NH₃)₂+(aq) $AgCl(s) \rightleftharpoons Ag^{+}(aq) + Cl^{-}(aq)$ Ksp $Ag^+(aq) + 2 NH_3(aq) \rightleftharpoons Ag(NH_3)_2^+(aq)$ K_f $AgCl_{(s)}$ + 2 $NH_3 \rightleftharpoons Ag(NH_3)_2$ + + Cl- $\mathbf{K}_{\text{net}} = \mathbf{K}_{\text{sp}} * \mathbf{K}_{\text{f}}$ from this Chapter: #### See - · Chapter Fifteen Study Guide - Chapter Fifteen Concept Guide - Types of Equilibrium Constants - · Solubility Guide - · Important Equations (following this slide) - End of Chapter Problems (following this slide) **End of Chapter 15** MAR Important Equations, Constants, and Handouts know how to predict solubility using CH 221 solubility guide Solubility product constant Molar solubility of the ions $Ag^{+}(aq) + 2 CN^{-1}(aq) \rightleftharpoons Ag(CN)_{2}^{-1}(aq)$ $$K_{\rm f} = \frac{[Ag(CN)_2^{-1}]}{[Ag^+][CN^{-1}]^2} = 5.6 * 10^{18}$$ Solubility: Common ion effect, separating salts by differences in solubility · Types of Equilibrium Constants · Solubility Guide End of Chapter Problems: Test Yourself - Predict whether each of the following is insoluble or soluble in water: (NH₄)₂CO₃, ZnSO₄, NiS, BaSO₄ - When 1.55 g of solid thallium(I) bromide is added to 1.00 L of water, the salt dissolves to a small extent: $TIBr(s) \Longrightarrow TI^*(aq) + Br^*(aq)$ The thallium(I) and bromide ions in equilibrium with TIBr each have a - thallium(I) and bromide ions in equilibrium with TIBr each have a concentration of 1.9×10^{5} M. What is the value of $K_{\rm sp}$ for TIBr? You add 0.979 g of Pb(OH)₂ to 1.00 L of pure water at 25 °C. The pH is 9.15. Estimate the value of $K_{\rm sp}$ for Pb(OH)₂. Estimate the solubility of calcium fluoride, CaF₂ (a) in moles per liter and (b) in grams per liter of pure water. CaF₂(s) \Longrightarrow Ca²⁺(aq) + 2 F⁻¹(aq) $K_{\rm sp} = 5.3 \times 10^{-1}$ The $K_{\rm sp}$ value for radium sulfate, RaSO₄, is 3.7×10^{-11} . If 0.25 mg of radium sulfate is placed in 1.00×10^{2} mL of water, does all of it dissolve? - If not, how much dissolves? $RaSO_4(s) \rightleftharpoons Ra^{2*}(aq) + SO_4^{-2}(aq)$ 6. Which compound is more soluble: $PbCl_2$ ($K_{sp} = 1.7 \times 10^{-5}$) or $PbBr_2$ ($K_{sp} = 1.7 \times 10^{-5}$) 6.6 x 10-6)? MAR MAR MAR #### End of Chapter Problems: Answers - 1. (NH₄)₂CO₃ & ZnSO₄ (soluble), NiS & BaSO₄ (insoluble) 2. $K_{\rm Sp}$ = 3.6 x 10⁻⁶ 3. $K_{\rm Sp}$ = 1.4 x 10⁻¹⁵ 4. a) 2.4 x 10⁻⁴ M b) 0.018 g/L 5. 0.05 mg does not dissolve 6. PbCl₂