

Adding NaOH from the buret to acetic acid: Initially the pH increases very slowly, then rises dramatically at equivalence point pH rises, then levels off as equivalence point passed

Acid-Base Titrations

Notice how [HOAc] diminishes with NaOH , but [OAc-] increases with NaOH
Important to consider conjugates in titrations where weak acids or bases dominate
But first, buffers and the common ion effect

The Common Ion Effect

A special form of Le Chatelier's Principle...
QUESTION: What is the effect on the pH of adding $\mathrm{NH}_{4} \mathrm{Cl}$ to $0.25 \mathrm{M} \mathrm{NH}_{3}(\mathrm{aq})$?
$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{OH}-(\mathrm{aq})$
Here we are adding an ion COMMON to the equilibrium with NH_{3} (i.e. $\mathrm{NH}_{4}{ }^{+}$)
Le Chatelier predicts that the equilibrium will shift to the \qquad -.
The pH will go \qquad -
After all, $\mathbf{N H}_{4}{ }^{+}$is an acid!

The Common Ion Effect
A special form of Le Chatelier's Principle...
QUESTION: What is the effect on the pH of adding $\mathrm{NH}_{4} \mathrm{Cl}$ to $0.25 \mathrm{M} \mathrm{NH}_{3}(\mathrm{aq})$?
$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{OH}-(\mathrm{aq})$
Let us first calculate the pH of a 0.25 M NH_{3} solution.

	$\left[\mathrm{NH}_{3}\right]$	$\left[\mathrm{NH}_{4}{ }^{+}\right]$	$[\mathrm{OH}-]$
initial change equilib			

The Common Ion Effect

A special form of Le Chatelier's Principle...
QUESTION: What is the effect on the pH of adding $\mathrm{NH}_{4} \mathrm{Cl}$ to $0.25 \mathrm{M} \mathrm{NH}_{3}(\mathrm{aq})$?

$$
\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

$$
K_{b}=1.8 \times 10^{-5}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}=\frac{\mathrm{x}^{2}}{0.25-\mathrm{x}}
$$

$$
\text { Assuming } x \text { is } \ll 0.25 \text {, we have }
$$

$$
\left[\mathrm{OH}^{-}\right]=x=\left[\mathrm{K}_{\mathrm{b}}(0.25)\right]^{1 / 2}=0.0021 \mathrm{M}
$$

$$
\text { This gives } \mathrm{pOH}=2.67
$$

$$
\text { and so } \mathrm{pH}=14.00-2.67=11.33
$$

$$
\text { or: } \mathrm{pH}=14+\log \left[\mathrm{K}_{\mathrm{b}}{ }^{\circ} \mathrm{C}_{\mathrm{b}}\right]^{1 / 2}=11.33
$$

The Common Ion Effect

A special form of Le Chatelier's Principle...
Problem: What is the $\mathbf{p H}$ of a solution with $0.10 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$ and $0.25 \mathrm{M} \mathrm{NH}_{3}(\mathrm{aq})$?
$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{OH}(\mathrm{aq})$
$K_{b}=1.8 \times 10^{-5}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}=\frac{\mathrm{x}(0.10+\mathrm{x})}{0.25-\mathrm{x}}$
Because equilibrium shifts left, \mathbf{x} is MUCH less than 0.0021 M , the value without $\mathrm{NH}_{4} \mathrm{Cl}$.

Buffer Solutions

The function of a buffer is to resist changes in the pH of a solution.
Buffers invoke a special case of the common ion effect.
Buffer Composition:

Weak Acid	+	Conj. Base
HOAc	+	OAc^{-}
$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	+	$\mathrm{HPO}_{4}{ }^{2-}$
Weak Base	+	Conj. Acid
NH_{3}	+	$\mathrm{NH}_{4}{ }^{+}$

The Common Ion Effect
A special form of Le Chatelier's Principle...
Problem: What is the $\mathbf{p H}$ of a solution with $0.10 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$ and $0.25 \mathrm{M} \mathrm{NH}_{3}(\mathrm{aq})$?
$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{OH} \cdot(\mathrm{aq})$
We expect that the pH will decline on adding $\mathrm{NH}_{4} \mathrm{Cl}$. Let's test that!
$\left[\mathrm{NH}_{3}\right] \quad\left[\mathrm{NH}_{4}{ }^{+}\right] \quad\left[\mathrm{OH}^{-}\right]$
initial
change
equilib
MAR

The Common Ion Effect

A special form of Le Chatelier's Principle...
Problem: What is the $\mathbf{p H}$ of a solution with $0.10 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$ and $0.25 \mathrm{M} \mathrm{NH}_{3}(\mathrm{aq})$?
$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{OH}(\mathrm{aq})$
$K_{b}=1.8 \times 10^{-5}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}=\frac{\mathrm{x}(0.10+\mathrm{x})}{0.25-\mathrm{x}}$
[OH-] $=x=(0.25 / 0.10) \mathrm{K}_{\mathrm{b}}=4.5 \times 10^{-5} \mathrm{M}$
This gives $\mathrm{pOH}=4.35$ and $\mathrm{pH}=9.65$
pH drops from 11.33 to 9.65 on adding a common ion $\left(\mathrm{NH}_{4}{ }^{+}\right)$.

MAR

HCl is added to a solution of a weak acid $\mathrm{H}_{2} \mathrm{PO}_{4}$ - and its conjugate base $\mathrm{HPO}_{4}{ }^{2-}$.

Buffers in Our Bodies

The blood pH in our bodies is regulated by a carbonic acid / hydrogen carbonate ("bicarbonate") buffer system:

$\mathrm{CO}_{2}+\mathrm{H}_{\mathbf{2}} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCO}_{3}{ }^{-1}$

Exhaling CO_{2} raises the pH of our blood!

Buffer Solutions

Consider HOAc/OAc- to see how buffers work
Conjugate base in buffers consumes strong acid!

$$
\begin{aligned}
& \mathrm{HOAc}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{OAc}+\mathrm{H}_{3} \mathrm{O}^{+} \\
& \mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}
\end{aligned}
$$

Therefore, the reverse reaction of the weak base with added $\mathrm{H}_{3} \mathrm{O}^{+}$(strong acid) would be:
$\mathrm{OAc}-+\mathrm{H}_{3} \mathrm{O}^{+} \rightleftharpoons \mathrm{HOAc}+\mathrm{H}_{2} \mathrm{O}$ $\mathrm{K}_{\text {reverse }}=1 / \mathrm{K}_{\mathrm{a}}=5.6 \times 10^{4}$
$\mathrm{K}_{\text {reverse }}$ is VERY LARGE, so OAc- completely consumes the $\mathrm{H}_{3} \mathrm{O}^{+}$!

Buffer Solutions

Problem: What is the pH of a buffer that has [HOAc] $=0.700 \mathrm{M}$ and $[\mathrm{OAc}-]=0.600 \mathrm{M}$?
$\mathrm{HOAc}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{OAc}+\mathrm{H}_{3} \mathrm{O}^{+}$ $\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}$
[HOAc] [OAc-] [$\mathrm{H}_{3} \mathrm{O}^{+}$]
initial
change
equilib

Buffer Solutions

Consider HOAc/OAc- to see how buffers work
The weak acid in buffers consumes strong base! We know:

$$
\begin{gathered}
\mathrm{OAc} \\
+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HOAc}+\mathrm{OH}^{-} \\
\mathrm{K}_{\mathrm{b}}=5.6 \times 10^{-10}
\end{gathered}
$$

Therefore, the reverse reaction of the weak acid with added OH^{-}(strong base) would be:
$\mathrm{HOAc}+\mathrm{OH}^{-} \rightleftharpoons \mathrm{OAc}-+\mathrm{H}_{2} \mathrm{O}$
and: $\mathrm{K}_{\text {reverse }}=\mathbf{1 /} \mathrm{K}_{\mathrm{b}}=1.8 \times 10^{9}$
$\mathrm{K}_{\text {reverse }}$ is VERY large, so HOAc completely consumes the OH !

MAR

Buffer Solutions

Buffer Solutions

Problem: What is the pH of a buffer that has [HOAc] $=0.700 \mathrm{M}$ and $\left[\mathrm{OAc}^{-}\right]=0.600 \mathrm{M}$?
$\mathrm{HOAc}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{OAc}+\mathrm{H}_{3} \mathrm{O}^{+}$
$K_{a}=1.8 \times 10-5$

	[HOAc]	[OAc-]	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
equilib	0.700 - x	$0.600+x$	X

Assuming that $x \ll 0.700$ and 0.600 , we have

$$
\begin{aligned}
& K_{a}=1.8 \times 10^{-5}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right](0.600)}{0.700} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] }=1.8 \times 10^{-5} *(0.700 / 0.600)=2.1 \times 10^{-5} \text { and } \\
& \mathrm{pH}=4.68
\end{aligned}
$$

Buffer Solutions

Notice that the expression for calculating the H^{+}conc. of the buffer is:
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{\text { Orig. conc. of } \mathrm{HOAc}}{\text { Orig. conc. of } \mathrm{OAc}^{-}} \bullet \mathrm{K}_{\mathrm{a}}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{[\text { Acid }]}{[\text { Conj. base }]} \bullet \mathrm{K}_{\mathrm{a}}$ or $\left[\mathrm{OH}^{-}\right]=\frac{[\text { Base }]}{[\text { Conj. acid }]} \bullet \mathrm{K}_{\mathrm{b}}$
Notice that $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$or $[\mathrm{OH}]$ depend on K and the ratio of acid and base concentrations

Henderson-Hasselbalch Equation

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { Conj. base }]}{[\text { Acid }]}
$$

Note that the CONCENTRATIONS of the acid and conjugate base are not important.
It is the RATIO of the NUMBER OF MOLES that affects pH
Result: diluting a buffer solution does not change its pH
Result: You can use moles or molarity when using Henderson-Hasselbalch!
See: Buffers and Henderson-Hasselbalch Guide

Adding an Acid to a Buffer

What is the pH when 1.00 mL of 1.00 M HCl is added to a) 1.00 L of pure water (after $\mathrm{HCl}, \mathrm{pH}=3.00$) b) 1.00 L of buffer that has $[\mathrm{HOAc}]=0.700 \mathrm{M}$ and [OAc-] $=0.600 \mathrm{M}$ ($\mathrm{pH}=4.68$)

Solution to Part (b)
Step 1 - do the stoichiometry
$\mathrm{H}_{3} \mathrm{O}^{+}($from HCl$)+\mathrm{OAc}$ ((from buffer) --->
HOAc (from buffer)
The reaction occurs completely because K is very large.

Henderson-Hasselbalch Equation

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{[\text { Acid }]}{[\text { Conj. base }]} \cdot \mathrm{K}_{\mathrm{a}}
$$

Take the negative log of both sides of this equation:

The pH is determined largely by the pK_{a} of the acid and then adjusted by the ratio of acid and conjugate base. Important equation!

Adding an Acid to a Buffer

Problem: What is the $\mathbf{p H}$ when $\mathbf{1 . 0 0} \mathbf{~ m L}$ of $\mathbf{1 . 0 0}$ M HCl is added to
a) 1.00 L of pure water (before $\mathrm{HCl}, \mathrm{pH}=$ 7.00)
b) 1.00 L of buffer that has [HOAc] $=\mathbf{0 . 7 0 0} \mathbf{~ M}$ and [OAc-] $=\mathbf{0 . 6 0 0 ~ M}(\mathrm{pH}=4.68)$
Solution to Part (a)
pH of strong acid $=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log [\mathrm{HCl}]$
$\mathrm{M}_{1} \cdot \mathrm{~V}_{1}=\mathrm{M}_{2} \cdot \mathrm{~V}_{2}$
1.00 M * $1.00 \mathrm{~mL}=\mathrm{M}_{2} \cdot 1001 \mathrm{~mL}$
$\mathrm{M}_{2}=9.99 \times 10^{-4} \mathrm{M}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\mathrm{pH}=3.00$
MAR

Adding an Acid to a Buffer
What is the pH when 1.00 mL of 1.00 M HCl is added to a) $\quad 1.00 \mathrm{~L}$ of pure water (after $\mathrm{HCl}, \mathrm{pH}=3.00$) b) $\quad 1.00 \mathrm{~L}$ of buffer that has $[\mathrm{HOAc}]=\mathbf{0 . 7 0 0} \mathbf{~ M}$ and [OAc-] $=0.600 \mathrm{M}(\mathrm{pH}=4.68)$

Solution to Part (b): Step 1-Stoichiometry
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$[OAc-] [HOAc]
Initial
Change
After rxn
Now we need to calculate pH using MAR

Adding an Acid to a Buffer

What is the $\mathbf{p H}$ when 1.00 mL of 1.00 M HCl is added to a) 1.00 L of pure water (after $\mathrm{HCl}, \mathrm{pH}=3.00$) b) $\quad 1.00 \mathrm{~L}$ of buffer that has $[\mathrm{HOAc}]=\mathbf{0 . 7 0 0} \mathrm{M}$ and
$[\mathrm{OAc}-]=0.600 \mathrm{M}(\mathrm{pH}=4.68)$ [OAc-] $=0.600 \mathrm{M}(\mathrm{pH}=4.68)$

Solution to Part (b): Step 2 - Equilibrium

$\quad \mathrm{HOAc}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OAc}^{-}$

$$
\text {[HOAc] [OAc-] }\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

Initial
Change
Equilibrium

Adding Acids and Bases to Buffers

For adding strong acids to buffers:
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left(\mathrm{mol}_{\text {Conj base }}-\mathrm{mol}_{\text {strong acid }}\right)}{\left(\mathrm{mol}_{\text {weak acid }}+\mathrm{mol}_{\text {strong acid }}\right)}$

For adding strong bases to buffers:
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left(\mathrm{mol}_{\text {Conj base }}+\mathbf{m o l}_{\text {strong base }}\right)}{\left(\mathrm{mol}_{\text {weak acid }}-\mathbf{m o l}_{\text {strong base }}\right)}$

Very useful for calculating pH changes in buffers! See: Buffers and Henderson-Hasselbalch Guide

Adding an Acid to a Buffer

What is the $\mathbf{p H}$ when 1.00 mL of 1.00 M HCl is added to
a) $\quad 1.00 \mathrm{~L}$ of pure water (after $\mathrm{HCl}, \mathrm{pH}=3.00$)
b) 1.00 L of buffer that has $[\mathrm{HOAc}]=0.700 \mathrm{M}$ and [OAc-] $=0.600 \mathrm{M}(\mathrm{pH}=4.68)$

Solution to Part (b): Step 2 - Equilibrium

$$
\mathrm{HOAc}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OAc}^{-}
$$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{[\mathrm{HOAc}]}{\left[\mathrm{OAc}^{-}\right]} \cdot K_{a}=\frac{0.701}{0.599} \bullet\left(1.8 \times 10^{-5}\right)
$$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.1 \times 10^{-5} \mathrm{M} \quad \cdots---->\mathrm{pH}=4.68
$$

The pH has not changed on adding HCl to the buffer!

Adding an Acid to a Buffer

What is the pH when 1.00 mL of 1.00 M HCl is added to a) 1.00 L of pure water (after $\mathrm{HCl}, \mathrm{pH}=3.00$) b) $\quad 1.00 \mathrm{~L}$ of buffer that has $[\mathrm{HOAc}]=\mathbf{0 . 7 0 0} \mathbf{~ M}$ and
$[\mathrm{OAc}-]=0.600 \mathrm{M}(\mathrm{pH}=4.68)$ [OAc-] $=0.600 \mathrm{M}(\mathrm{pH}=4.68)$

Solution to Part (b): Step 2 - Equilibrium

$\mathrm{HOAc}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OAc}^{-}$			
	[HOAc]	[OAc-]	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$]
Equilibrium	0.701-x	0.599+x	x

Because $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.1 \times 10^{-5} \mathrm{M}$ BEFORE
adding HCl , we again neglect x relative to 0.701 and 0.599 .

Adding an Acid to a Buffer

Use the Henderson-Hasselbalch equation to calculate the pH when 1.00 mL of 1.00 M HCl is added to 1.00 L of buffer that has $[\mathrm{HOAc}]=0.700 \mathrm{M}$ and $[\mathrm{OAc}-]=0.600 \mathrm{M}$

We can use an alternate form of the $\mathrm{H}-\mathrm{H}$ equation:

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left(\mathbf{m o l}_{\text {Conj base }}-\mathbf{m o l}_{\text {strong acid }}\right)}{\left(\mathbf{m o l}_{\text {weak acid }}+\mathbf{m o l}_{\text {strong acid }}\right)} \\
& \mathrm{pK}_{\mathrm{a}}=-\log (1.80 * 10-5)=4.74 \\
& \mathrm{pH}=4.74+\log \frac{(0.600-0.00100)}{(0.700+0.00100)}=4.67
\end{aligned}
$$

Answer in good agreement with "double ice" method (4.68)
See: Buffers and Henderson-Hasselbalch Guide

Preparing a Buffer

You want to create a buffer solution with a $\mathrm{pH}=4.30$.
This means $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10-\mathrm{pH}=5.0 \times 10^{-5} \mathrm{M}$

Henderson
It is best to choose an acid such that:

$$
{ }^{*}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \approx \mathrm{K}_{\mathrm{a}} \text {, or }
$$

$$
{ }^{*} \mathrm{pH} \approx \mathrm{pK}_{\mathrm{a}}
$$

You get the exact $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$] (or pH) by adjusting the ratio of weak acid to conjugate base.
For a pH = 4.30 buffer, we will look for a value of $\mathrm{K}_{\mathrm{a}} \approx 5.0 \times 10^{-5}$ or a $\mathrm{pK}_{\mathrm{a}} \approx 4.30$

Preparing a Buffer

POSSIBLE BUFFERS	K	pK a
$\mathrm{HSO}_{4}{ }^{-} / \mathrm{SO}_{4}{ }^{2-}$	1.2×10^{-2}	1.92
HOAc / OAc	1.8×10^{-5}	4.74
HCN / CN-	4.0×10^{-10}	9.40

Best choice is acetic acid / acetate - closest in $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$] to K_{a} or pH to pK_{a} !
MAR

Preparing a Buffer

You want to create a buffer solution at $\mathrm{pH}=4.30\left(\right.$ or $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=$ $5.0 \times 10^{-5} \mathrm{M}$). Find the ratio of acid to base needed to get the buffer to 4.30 .
[HOAc] $/\left[\mathrm{OAC}^{-}\right]$ratio $=2.8 / 1$ (previous slide)
Therefore, if you use 0.10 mol of NaOAc and 0.28 mol of HOAc, you will have $\mathrm{pH}=4.30$.

Could have also used Henderson Hasselbalch:

MAR

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\text { [Conj. base] }}{\text { [Acid] }} \\
& 4.30=4.74+\log \frac{\text { [Conj. base] }]}{[\text { Acid }]} \\
& 10^{-0.44}=0.36^{*}[\text { base }] /[\text { acid] } \text {, invert }: \\
& {[\text { acid }] /[\text { base }]=2.8}
\end{aligned}
$$

You want to create a buffer solution at $\mathbf{p H}=4.30$ (or $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=5.0 \times 10^{-5} \mathrm{M}$) using HOAc and OAc^{-1}.
Equal moles of acid (HOAc) and base (OAc^{-1}) create $\mathrm{pH}=4.74$ (= pK_{a}). Find the ratio of acid to base needed to get the buffer to 4.30.

$$
\begin{aligned}
& \mathrm{K}_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OAc}^{-}\right]}{[\mathrm{HOAc}]} \text {, or rearranged: } \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=5.0 \times 10^{-5}=\frac{[\mathrm{HOAc}]}{\left[\mathrm{OAc}^{-}\right]}\left(1.8 \times 10^{-5}\right)}
\end{aligned}
$$

Solve for [HOAc] / [OAc-] ratio:
$=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] / \mathrm{K}_{\mathrm{a}}=2.8 / 1$

Preparing a Buffer Solution

Buffer prepared from
$8.4 \mathrm{~g} \mathrm{NaHCO}_{3}$
weak acid
$16.0 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}$
conjugate base
$\mathrm{HCO}_{3}{ }^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CO}_{3^{2-}}{ }^{2-}$
What is the pH ?

Check yourself! Answer: 10.50

Titration Calculations

Allow us to calculate pH at any point in a titration We will study four types of titrations:

- $\mathrm{SA}+\mathrm{SB}$ (equivalence $\mathrm{pH}=7$)
- $\mathrm{SB}+\mathrm{SA}$ (equivalence $\mathrm{pH}=7$)
- $W A+S B$ (equivalence $\mathrm{pH}>7$)
- WB + SA (equivalence $\mathrm{pH}<7$)

Titrations separated into regions each with their own pH formula
Buffers used in WA + SB and WB + SA
We will do examples of all four as practice in lab.
See Titration Guide

- Strong acids and strong bases annihilate their opposites
- Weak acids and bases produce their conjugates
- $\mathbf{K}_{\mathbf{a}}$ and $\mathbf{K}_{\mathbf{b}}$ may be determined through titrations or half-equivalence pH values
- Remember: $\mathrm{K}_{\mathrm{a}}{ }^{*} \mathrm{~K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}}=\mathbf{1 . 0 0}{ }^{* 10-14}\left(\mathbf{2 5}{ }^{\circ} \mathrm{C}\right)$
- Often helpful to find $\mathbf{p K}_{\mathrm{a}}$ or $\mathbf{p K}_{\mathrm{b}}$
- Remember: $\mathrm{pK}_{\mathrm{a}}+\mathrm{pK}_{\mathrm{b}}=14$
- Need to know initial concentration and volume of titrant

Strong Acid + Strong Base

A strong acid + strong base titration

Acid-Base Reactions

QUESTION: You titrate $\mathbf{5 0} \mathbf{~ m L}$ of a $\mathbf{0 . 1 0 0} \mathbf{~ M}$ solution of HCl with 0.100 M NaOH . What is the pH of the initial solution?
$\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O}-->\mathrm{Cl}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
SOLUTION:
HCl is a strong acid
NaOH is a strong base
Hence, this is a strong acid + strong base titration Other common strong acids: $\mathrm{HNO}_{3}, \mathrm{HBr}, \mathrm{HI}, \mathrm{HClO}_{4}$ Other common strong bases: $\mathrm{KOH}, \mathrm{LiOH}$

Acid-Base Reactions

QUESTION: You titrate $\mathbf{5 0 .} \mathbf{m L}$ of a $\mathbf{0 . 1 0 0} \mathbf{~ M}$ solution of $\mathbf{~ H C I}$ with 0.100 M NaOH . What is the pH after 45 mL of NaOH have been added?
$\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O}--->\mathrm{Cl}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
SOLUTION:
First, determine which region of a strong acid and strong base titration to use by comparing mol HCl to mol NaOH
$\mathrm{n}_{\mathrm{sa}}=\mathbf{0 . 0 5 0} \mathrm{L}$ * $\mathbf{0 . 1 0 0} \mathbf{M}=0.0050 \mathrm{~mol} \mathbf{~ H C l}$
$\mathrm{n}_{\mathrm{sb}}=\mathbf{0 . 0 4 5 L}$ * $\mathbf{0 . 1 0 0} \mathbf{M}=0.0045 \mathrm{~mol} \mathrm{NaOH}$
Since $\mathrm{n}_{\mathrm{sa}}>\mathrm{n}_{\mathrm{sb}}$, this pH will fall in the pre-equivalence region

Strong Acid + Strong Base

Initial:

$$
\mathrm{pH}=-\log \left[\mathrm{n}_{\mathrm{sa}} / \mathrm{V}_{\mathrm{sa}}\right]
$$

Pre-equivalence:
$\mathrm{pH}=-\log \left(\frac{\mathrm{n}_{\mathrm{sa}}-\mathrm{n}_{\mathrm{sb}}}{\mathrm{V}_{\mathrm{sa}}+\mathrm{V}_{\mathrm{sb}}}\right)$
Equivalence: $\quad \mathrm{pH}=7$ (neutral salt + water)
Post-equivalence: $\quad \mathrm{pH}=14+\log \left(\frac{\mathrm{n}_{\mathrm{sb}}-\mathrm{n}_{\mathrm{sa}}}{\mathrm{V}_{\mathrm{sb}}+\mathrm{V}_{\mathrm{sa}}}\right)$

Acid-Base Reactions

> QUESTION: You titrate $50 . \mathrm{mL}$ of a 0.100 M solution of HCI with 0.100 M NaOH . What is the pH of the initial solution?
> $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O}--\mathrm{Cl}+\mathrm{H}_{3} \mathrm{O}^{+}$
> SOLUTION:

> For strong acids, $\quad \begin{aligned} \mathrm{pH} & =-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\$$$
> \mathrm{pH}
>
$$$& =-\log (0.100) \\ \mathrm{pH} & =1.000\end{aligned}$

Acid-Base Reactions

QUESTION: You titrate $\mathbf{5 0} \mathbf{~ m L}$ of a $\mathbf{0 . 1 0 0} \mathbf{M}$ solution of $\mathbf{~ H C I}$ with 0.100 M NaOH . What is the pH after 45 mL of NaOH have been added?
$\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O}--->\mathrm{Cl}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
From before: $\mathrm{n}_{\text {sa }}=0.0050 \mathrm{~mol}, \mathrm{n}_{\mathrm{sb}}=0.0045 \mathrm{~mol}$

$$
\begin{aligned}
\mathrm{pH} & =-\log \left(\frac{\mathrm{n}_{\mathrm{sa}}-\mathrm{n}_{\mathrm{sb}}}{\mathrm{~V}_{\mathrm{sa}}+\mathrm{V}_{\mathrm{sb}}}\right) \\
\mathrm{pH} & =-\log \left(\frac{0.0050-0.0045}{0.050+0.045}\right) \\
\mathrm{pH} & =2.3
\end{aligned}
$$

Acid-Base Reactions

QUESTION: You titrate 50. mL of a 0.100 M solution of HCl with 0.100 M NaOH . What is the pH at the equivalence point?
At equivalence, $\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}$
Only species present at equivalence are $\mathrm{Na}^{+}, \mathrm{Cl}$ - and water.
Na^{+}and $\mathrm{Cl}-$ are conjugates of strong bases and acids; hence, they have no effect on the $\mathbf{p H}$
pH at equivalence point will be equal to 7 (neutral) due to presence of water
The volume required to get to equivalence:
0.0050 mol HCl * ($\mathrm{mol} \mathrm{NaOH} / \mathrm{mol} \mathrm{HCl}$) * (L/0.100 mol NaOH) $=0.050 \mathrm{~L}$ or 50 mL

Initial:

$$
\mathrm{pH}=14+\log \left[n_{\mathrm{sb}} / \mathrm{V}_{\mathrm{sb}}\right]
$$

Pre-equivalence:

$$
\mathrm{pH}=14+\log \left(\frac{\mathrm{n}_{\mathrm{sb}}-\mathrm{n}_{\mathrm{sa}}}{\mathrm{v}_{\mathrm{sb}}+\mathrm{V}_{\mathrm{sa}}}\right)
$$

Equivalence: $\quad \mathrm{pH}=7$ (neutral salt + water)
Post-equivalence: $\quad \mathrm{pH}=-\log \left(\frac{\mathrm{n}_{\mathrm{sa}}-\mathrm{n}_{\mathrm{sb}}}{\mathrm{V}_{\mathrm{sa}}+\mathrm{V}_{\mathrm{sb}}}\right)$

Acid-Base Reactions

QUESTION: You titrate 50. mL of a $\mathbf{0 . 1 0 0} \mathbf{~ M}$ solution of HCl with $\mathbf{0 . 1 0 0} \mathbf{M ~ N a O H}$. What is the pH after 55 mL of NaOH have been added?

$$
\text { SOLUTION: (from before, } \left.n_{s a}=0.0050 \mathrm{~mol}\right)
$$

It took 50. mL of NaOH to reach equivalence; hence, we are now in the post-equivalence region
$\mathrm{n}_{\mathrm{sb}}=0.100 \mathrm{M}^{*} 0.055 \mathrm{~L}=0.0055 \mathrm{~mol}$
$\mathrm{pH}=14+\log \left(\frac{\mathrm{n}_{\mathrm{sb}}-\mathrm{n}_{\mathrm{sa}}}{\mathrm{V}_{\mathrm{sb}}+\mathrm{V}_{\mathrm{sa}}}\right)$
$\mathrm{pH}=14+\log \left(\frac{0.0055-0.0050}{0.055+0.050}\right)$
$\mathrm{pH}=14+(-2.3)=11.7$

Strong Base + Strong Acid

Notice similarities between $S A+S B$ and $S B+S A$ titrations!

A strong base + strong acid titration

Weak Acid + Strong Base		
Equivalence point dominated by conjugate base of weak acid	H-0.0:-	
Fong base titration		H

A weak acid + strong base titration
post-equivalence $\left(n_{\text {sb }}>n_{\text {wa }}\right)$

Weak Acid + Strong Base

Initial:

$$
\mathrm{pH}=-\log \sqrt{\mathrm{K}_{\mathrm{a}} \mathrm{C}_{\mathrm{wa}}}
$$

Acid-Base Reactions

QUESTION: You titrate $\mathbf{1 0 0}$. mL of a $\mathbf{0 . 0 2 5} \mathbf{~ M}$ solution of benzoic acid with 0.100 M NaOH . What is the pH of the initial solution? $\mathrm{K}_{\mathrm{a}}=6.3 \times 10^{-5}$
$\mathrm{HBz}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{Bz}+\mathrm{H}_{3} \mathrm{O}^{+}$

Pre-equivalence: $\quad \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{\mathrm{n}_{\mathrm{sb}}}{\mathrm{n}_{\mathrm{wa}}-\mathrm{n}_{\mathrm{sb}}}\right)$
Equivalence: $\quad \mathrm{pH}=14+\log \sqrt{\left(\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{a}}}\right)\left(\frac{\mathrm{n}_{\mathrm{wa}}}{\mathrm{V}_{\mathrm{wa}}+\mathrm{V}_{\mathrm{sb}}}\right)}$
Post-equivalence: $\mathrm{pH}=14+\log \left(\frac{\mathrm{n}_{\mathrm{sb}}-\mathrm{n}_{\mathrm{wa}}}{\mathrm{V}_{\mathrm{sb}}+\mathrm{V}_{\mathrm{wa}}}\right)$

$$
\mathrm{pH}=14+\log \sqrt{\left(\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{a}}}\right)\left(\frac{\mathrm{n}_{\mathrm{wa}}}{V_{\mathrm{wa}}+\mathrm{V}_{\mathrm{sb}}}\right)}
$$

Acid-Base Reactions

QUESTION: You titrate 100. mL of a $\mathbf{0 . 0 2 5} \mathbf{~ M}$ solution of benzoic acid with 0.100 M NaOH . What is the pH of the initial solution? $\mathrm{K}_{\mathrm{a}}=6.3 \times 10^{-5}$
$\mathrm{HBz}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{Bz}+\mathrm{H}_{3} \mathrm{O}^{+}$
SOLUTION:

$$
\text { For weak acids, } \quad \begin{aligned}
& \mathrm{pH}=-\log \sqrt{\mathrm{K}_{\mathrm{a}} \mathrm{C}_{\mathrm{wa}}} \\
& \mathrm{pH}=-\log \sqrt{\left(6.3^{*} 10^{-5}\right)(0.025)} \\
& \mathrm{pH}=2.90
\end{aligned}
$$

$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}=\mathrm{HBz}$ Benzoic acid

Acid-Base Reactions

QUESTION: You titrate $\mathbf{1 0 0} \mathbf{~ m L}$ of a $\mathbf{0 . 0 2 5} \mathbf{~ M}$ solution of benzoic acid with 0.100 M NaOH . What is the pH after 10 . mL of NaOH have been added? $\mathrm{K}_{\mathrm{a}}=6.3 \times 10^{-5}$

From before: $\mathrm{n}_{\mathrm{wa}}=0.0025 \mathrm{~mol}, \mathrm{n}_{\mathrm{sb}}=0.0010 \mathrm{~mol}$
$\mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}=-\log \left(6.3^{* 1} 0^{-5}\right)=4.20$

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{\mathrm{n}_{\mathrm{sb}}}{\mathrm{n}_{\mathrm{wa}}-\mathrm{n}_{\mathrm{sb}}}\right) \quad\left\{\begin{array}{l}
\text { A version of the } \\
\text { Henderson-Hasselbalch } \\
\text { equation! }
\end{array}\right. \\
& \mathrm{pH}=4.20+\log \left(\frac{0.0010}{0.0025-0.0010}\right) \\
& \mathrm{pH}=4.20-0.176=4.02
\end{aligned}
$$

Acid-Base Reactions

QUESTION: You titrate 100. $\mathbf{m L}$ of a $\mathbf{0 . 0 2 5} \mathbf{~ M}$ solution of benzoic acid with 0.100 M NaOH . What is the pH after 12.5 mL of NaOH have been added? $\mathrm{K}_{\mathrm{a}}=6.3 \times 10^{-5}$

From before: $\mathrm{n}_{\mathrm{wa}}=\mathbf{0 . 0 0 2 5} \mathbf{~ m o l}, \mathrm{pK}_{\mathrm{a}}=4.20$
$\mathrm{n}_{\mathrm{sb}}=\mathbf{0 . 0 1 2 5} \mathrm{L} * \mathbf{0 . 1 0 0} \mathbf{M}=0.00125 \mathrm{~mol} \mathrm{NaOH}$
Since $\mathbf{n}_{\text {wa }}>\mathbf{n}_{\text {sb }}$, this is the pre-equivalence region

$$
\begin{gathered}
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{\mathrm{n}_{\mathrm{sb}}}{\mathrm{n}_{\mathrm{wa}}-\mathrm{n}_{\mathrm{sb}}}\right) \\
\mathrm{pH}=4.20+\log \left(\frac{0.00125}{0.0025-0.00125}\right)=4.20+\log (1) \\
\mathrm{pH}=4.20+0=4.20
\end{gathered}
$$

Acid-Base Reactions

> QUESTION: You titrate 100 mL of a 0.025 M solution of benzoic acid with $0.100 \mathrm{M} \mathbf{N a O H}$. What is the pH after 12.5 mL of NaOH have been added? $\mathrm{K}_{\mathrm{a}}=\mathbf{6 . 3 \times 1 0 ^ { - 5 }}$

Before: $\mathrm{n}_{\mathrm{wa}}=\mathbf{0 . 0 0 2 5} \mathbf{~ m o l}, \mathrm{pK}_{\mathrm{a}}=\mathbf{4 . 2 0}, \mathrm{n}_{\mathrm{sb}}=\mathbf{0 . 0 0 1 2 5} \mathbf{~ m o l}$
When $\mathbf{n}_{\text {sb }}=1 / 2 \mathbf{n}_{\text {wa }}$, this is called the half-equivalence region $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$ at the half-equivalence point Useful method of finding K_{a} (and K_{b}) values
Also, the volume of titrant (NaOH) at half equivalence is exactly half the volume necessary to reach equivalence
We will need $\left(\mathbf{2}^{* 12.5}\right)=25 \mathrm{~mL}$ of NaOH to reach equivalence!

Acid-Base Reactions

QUESTION: You titrate $\mathbf{1 0 0} \mathbf{~ m L}$ of a $\mathbf{0 . 0 2 5} \mathbf{~ M}$ solution of benzoic acid with 0.100 M NaOH to the equivalence point. What is the pH at the equivalence point? $\mathrm{K}_{\mathrm{a}}=6.3 \times 10^{-5}$
$\mathrm{n}_{\mathrm{wa}}=\mathbf{0 . 1 0 0} \mathrm{L}$ * $0.025 \mathrm{M}=0.0025 \mathrm{~mol} \mathrm{HBz}$
$0.0025 \mathrm{~mol} \mathrm{HBz}=0.0025 \mathrm{~mol} \mathrm{NaOH}$ at equivalence
$0.0025 \mathrm{~mol} \mathrm{NaOH}^{*}(\mathrm{~L} / 0.100 \mathrm{~mol})=0.025 \mathrm{~L}=\mathrm{V}_{\mathrm{sb}}$
$\mathrm{pH}=14+\log \sqrt{\left(\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{a}}}\right)\left(\frac{\mathrm{n}_{\mathrm{wa}}}{\mathrm{V}_{\mathrm{wa}}+\mathrm{V}_{\mathrm{sb}}}\right)}$
$\mathrm{pH}=14+\log \sqrt{\left(\frac{10^{-14}}{6.3^{*} 10^{-5}}\right)\left(\frac{0.0025}{0.100+0.025}\right)}$
$\mathrm{pH}=14+(-5.75)=8.25$
MAR

Acid-Base Reactions

QUESTION: You titrate 100. $\mathbf{m L}$ of a $\mathbf{0 . 0 2 5} \mathbf{~ M}$ solution of benzoic acid with 0.100 M NaOH to the equivalence point. What is the pH at the equivalence point? $\quad \mathrm{K}_{\mathrm{a}}=6.3 \times 10^{-5}$
At equivalence, $\mathrm{HBz}+\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{Bz}^{-}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{mol} \mathrm{NaOH}=\mathrm{mol} \mathrm{HBz}$, or NaOH annihilates HBz
mol $\mathrm{HBz}=\mathrm{mol} \mathrm{Bz}-$ at equivalence, and pH dominated by conjugate base of weak acid
pH at equivalence point will be basic when titrating a weak acid with a strong base!

Acid-Base Reactions

QUESTION: You titrate 100. $\mathbf{m L}$ of a $\mathbf{0 . 0 2 5} \mathbf{~ M}$ solution of benzoic acid with 0.100 M NaOH . What is the pH after 26.0 mL of NaOH have been added?

SOLUTION: (from before, $n_{w a}=0.0025 \mathrm{~mol}$)
It took $\mathbf{2 5 ~ \mathbf { ~ m L }}$ of NaOH to reach equivalence; hence, we are now in the post-equivalence region

$\mathrm{n}_{\mathrm{sb}}=\mathbf{0 . 1 0 0} \mathbf{M}$ * $0.026 \mathrm{~L}=0.0026 \mathrm{~mol}$

$$
\begin{aligned}
& \mathrm{pH}=14+\log \left(\frac{\mathrm{n}_{\mathrm{sb}}-\mathrm{n}_{\mathrm{wa}}}{\mathrm{~V}_{\mathrm{sb}}+\mathrm{V}_{\mathrm{wa}}}\right) \\
& \mathrm{pH}=14+\log \left(\frac{0.0026-0.0025}{0.026+0.100}\right)
\end{aligned}
$$

$$
\mathrm{pH}=14+(-3.10)=10.9
$$

Acid-Base Reactions

With weaker acids, the initial pH is higher and pH changes near the equivalence point are more subtle.

Polyprotic Acids

$$
\begin{aligned}
& \text { T. Weak Base + Strong Acid }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Initial: } \\
\text { Pre-equivalence: }
\end{array} \\
& \mathrm{pH}=14+\log \sqrt{\mathrm{K}_{\mathrm{b}} \mathrm{C}_{\mathrm{wb}}} \\
& \text { Pre-equivalence: } \quad \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{\mathrm{n}_{\mathrm{wb}}-\mathrm{n}_{\mathrm{sa}}}{\mathrm{n}_{\mathrm{sa}}}\right) \\
& \text { Equivalence: } \\
& \text { Post-equivalence: } \\
& \mathrm{pH}=-\log \sqrt{\left(\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{b}}}\right)\left(\frac{\mathrm{n}_{\mathrm{wb}}}{\mathrm{~V}_{\mathrm{wb}}+\mathrm{V}_{\mathrm{sa}}}\right)} \\
& \mathrm{pH}=-\log \left(\frac{\mathrm{n}_{\mathrm{sa}}-\mathrm{n}_{\mathrm{wb}}}{\mathrm{~V}_{\mathrm{sa}}+\mathrm{V}_{\mathrm{wb}}}\right)
\end{aligned}
$$

Titrations of polyprotic acids

Weak Base + Strong Acid
Equivalence point dominated by conjugate acid of weak base

A weak base + strong acid titration

pH Indicators

Equivalence point important in titration, can use an indicator to signify equivalence point
Indicator color change must reflect equivalence point to be useful!
MAR

Color Changes for Bromthymol Blue

pH Indicators

Which indicator to use?
Phenolphthalein or Methyl Red?
The pH at the equivalence point in this titration is <7.
Methyl red is the indicator of choice here.

Page III-14b-12 / Chapter Fourteen Part II Lecture Notes

End of Chapter 14
 Part II

See:

- How Strong Is That Acid?
- Chapter Fourteen Part II Study Guide
- Types of Equilibrium Constants
- Titration Guide
- Buffers and Henderson-Hasselbalch Guide
- Important Equations (following this slide)
- End of Chapter Problems (following this slide)
MAR

Important Equations, Constants, and

Handouts from this Chapter:

Titrations (SA+SB, SB+SA,
WA+SB, WB+SA) and Buffers chapter

$$
\begin{gathered}
\mathbf{p H}=\mathbf{p K}_{\mathbf{a}}+\log \frac{[\text { Conj. base }]}{[\text { Acid }]} \\
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left(\mathrm{mol}_{\text {Conj base }}-\text { mol }_{\text {strong acid }}\right)}{\left(\text { mol }_{\text {weak acid }}+\text { mol }_{\text {strong acid }}\right)} \\
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left(\mathrm{mol}_{\text {Conj base }}+\mathrm{mol}_{\text {strong base }}\right)}{\left(\mathrm{mol}_{\text {weak acid }}-\mathrm{mol}_{\text {strong base }}\right)}
\end{gathered}
$$

Handouts:

- Manipulating Equilibrium Constant Expressions
- Types of Equilibrium Constants
- Table of K_{a} and K_{b} values in Problem Set \#2
- Titration Guide

MAR • Buffers and Henderson-Hasselbalch Guide

Preferama	
Sparamee	
Natatersis	
	$\mathrm{pH}=\mathrm{m}$
	¢n-pht
Toutsamemexe fegom	
${ }_{\text {cosmamem }}$	

End of Chapter Problems: Test Yourself

See practice problem set \#3 for additional titration and buffer examples

1. Does the pH of the solution increase, decrease, or stay the same when you: a) Add solid ammonium chloride to a dilute aqueous solution of NH_{3}; b) Add solid sodium acetate to a dilute aqueous solution of acetic acid; c) Add solid NaCl to a dilute aqueous solution of NaOH ?
2. For each of the following cases, decide whether the pH is less than 7 , equal o 7 , or greater than 7: a) equal volumes of 0.10 M acetic acid, $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ and 0.10 M KOH are mixed; b) 25 mL of $0.015 \mathrm{M} \mathrm{NH}_{3}$ is mixed with 25 mL of 0.015 M HCl ; c) 150 mL of $0.20 \mathrm{M} \mathrm{HNO}_{3}$ is mixed with 75 mL of 0.40 M NaOH
3. What is the pH of a solution that consists of 0.20 M ammonia, NH_{3}, and 0.20 M ammonium chloride, $\mathrm{NH}_{4} \mathrm{Cl}$? $\left(K_{\mathrm{a}}=5.6 \times 10^{-10}\right)$
4. What mass of sodium acetate, $\mathrm{NaCH}_{3} \mathrm{CO}_{2}$, must be added to 1.00 L of 0.10 M acetic acid to give a solution with a pH of 4.50 ? ($K_{\mathrm{a}}=1.8 \times 10^{-5}$)
5. Phenol, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$, is a weak organic acid. Suppose 0.515 g of the compound is dissolved in exactly 125 mL of water. The resulting solution is titrated with $0.123 \mathrm{M} \mathrm{NaOH}: \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}(\mathrm{aq})+\mathrm{OH}^{-1}(\mathrm{aq}) \rightleftarrows \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-1}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ a) What is the pH of the original solution of phenol? b) What are the concentrations of all of the following ions at the equivalence point: Na^{+1} $\mathrm{H}_{3} \mathrm{O}^{+1}, \mathrm{OH}^{-1}$, and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-1}$? c) What is the pH of the solution at the equivalence point?

End of Chapter Problems: Answers

1. a) pH decreases; b) pH increases; c) no change to pH
2. a. $\mathrm{pH}>7$ b. $\mathrm{pH}<7 \quad$ c. $\mathrm{pH}=7$
3. $\mathrm{pH}=9.25$
4. 4.7 g
5. a) $\mathrm{pH}=5.62$ b) $\left[\mathrm{Na}^{+1}\right]=3.23 \times 10^{-2} \mathrm{~mol} / \mathrm{L},\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]=6.5 \times 10^{-12} \mathrm{~mol} / \mathrm{L}$, $\left[\mathrm{OH}^{-1}\right]=1.5 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$, and $\left.\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-1}\right]=3.07 \times 10^{-2} \mathrm{~mol} / \mathrm{L} \mathrm{c}\right) \mathrm{pH}=11.19$
See practice problem set \#3 for additional titration and buffer examples
