

Strong and Weak Acids/Bases

$\mathrm{HNO}_{3}, \mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}$ and HClO_{4} are among the few known strong monoprotic acids.

MAR

Strong and Weak Acids/Bases

Strong Base: 100\% dissociated in water.

$$
\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH} \cdot(\mathrm{aq})
$$

Other strong monobasic bases: $\mathrm{KOH}, \mathrm{LiOH}$

$\mathrm{Ca}(\mathrm{OH})_{2}$ is a strong dibasic system:
CaO (lime) $+\mathrm{H}_{2} \mathrm{O} \quad$-->
$\mathrm{Ca}(\mathrm{OH})_{2}$ (slaked lime)

Memorize the three strong monobasic bases!

Strong and Weak Acids/Bases
Generally divide acids and bases into STRONG or WEAK categories.
STRONG ACID: $\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{liq}) \rightarrow$ $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})$
HNO_{3} is about 100% dissociated in water. Acids create hydronium when they react with water.

Strong and Weak Acids/Bases

Weak acids are much less than 100% ionized in water.

One of the best known is acetic acid = $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}=\mathrm{HOAc}$
$\mathrm{HOAc}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{liq}) \rightleftharpoons$ OAc-(aq) $+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$

$\mathrm{OAc}{ }^{-}=\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}=$acetate ion

Strong and Weak Acids/Bases

Weak base: less than 100\% ionized in water
One of the best known weak bases is ammonia, NH_{3}
$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{liq}) \rightleftharpoons \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{OH}-(\mathrm{aq})$

H
$\mathrm{H}-\mathrm{N}$
I
I
H
Base
$H-\ddot{0}:$
1
H

ACID-BASE THEORIES

The most general theory for common aqueous acids and bases is the BRØNSTED LOWRY theory
ACIDS DONATE H+ IONS
BASES ACCEPT H+ IONS

See Brønsted Acids and Bases Handout

ACID-BASE THEORIES

NH_{3} is a BASE in water - and water is itself an ACID
$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightleftarrows \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
Base

$\mathrm{NH}_{3} / \mathrm{NH}_{4}{ }^{+}$is a conjugate pair - related by the gain or loss of \mathbf{H}^{+}
Every acid has a conjugate base and vice-versa.

MORE ABOUT WATER

$\mathrm{H}_{2} \mathrm{O}$ can function as both an ACID and a BASE.

Pure water undergoes AUTOIONIZATION

ACID-BASE THEORIES

The Brønsted definition means NH_{3} is a BASE in water - and water is itself an ACID
$\underset{\text { Base }}{\mathrm{NH}_{3}}+\underset{\text { Acid }}{\mathrm{H}_{2} \mathrm{O}} \rightleftharpoons \underset{\text { Acid }}{\mathrm{NH}_{4}}+\underset{\text { Base }}{\mathrm{OH}^{-}}$

H	
1	
$\mathrm{H}-\mathrm{N}:$	$\mathrm{H}-\ddot{\mathrm{O}}:$
1	1
H	H
Base	Acid

MAR

Conjugate Pairs

MAR

MORE ABOUT WATER

$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.00 \times 10^{-14}$ at $25{ }^{\circ} \mathrm{C}$
In a neutral solution $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=[\mathrm{OH}]$
so $\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}=[\mathrm{OH}]^{2}$
and so $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]=\sqrt{ } \mathrm{K}_{\mathrm{w}}=1.00 \times 10^{-7} \mathrm{M}$
Memorize $K_{w=} 1.00 \times 10^{-14!}$

Calculating $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$\& [OH^{-}]

You add 0.0010 mol of NaOH to 1.0 L of pure water. Calculate $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$.
Solution
$2 \mathrm{H}_{2} \mathrm{O}$ (liq) $\rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-(\mathrm{aq})}$ Le Chatelier predicts equilibrium shifts to the
\qquad _.
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<10^{-7}$ at equilibrium.
Set up an ICE concentration table.

Calculating $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$\& [$\left.\mathrm{OH}-\right]$
You add 0.0010 mol of NaOH to 1.0 L of pure water. Calculate $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$] and [OH^{-}].
Solution
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{liq}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}(\mathrm{aq})$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{K}_{\mathrm{w}} / 0.0010=1.0 \times 10^{-11} \mathrm{M}$
$\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-3} \mathrm{M}$

This solution is \qquad
because
$\left[\mathrm{OH}^{-}\right]>\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

[$\mathrm{H}_{3} \mathrm{O}^{+}$], [$\left.\mathrm{OH}-\right]$ and pH

A common way to express acidity and basicity is with pH

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

In a neutral solution,
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]=$
1.0×10^{-7} at $25^{\circ} \mathrm{C}$
$\mathrm{pH}=-\log \left(1.00 \times 10^{-7}\right)$

$$
=-(-7.00)=7.00
$$

$\mathrm{pH}=7.00$ for neutral solutions!

MAR

[$\mathrm{H}_{3} \mathrm{O}^{+}$], [OH^{-}] and pH

What is the pH of the 0.0010 M NaOH solution?
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{-11} \mathrm{M}$
$\mathrm{pH}=-\log \left(1.0 \times 10^{-11}\right)=11.00$
General conclusion -

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right],\left[\mathrm{OH}^{-}\right] \text {and } \mathrm{pH}
$$

If the pH of Diet Coke is 3.12 , it is
Because $\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$then
$\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\mathrm{pH}$
Take antilog and get
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10-\mathrm{pH}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10-3.12$
$=7.6 \times 10^{-4} \mathrm{M}$

logarithms and sig figs

Logarithms are exponents with special sig figs rules. General rule:
log of experimentally measured number with N sig figs give numbers with N decimal places after the decimal (digit before decimal only indicates magnitude)
Examples:
$\log 3.07^{*} 10^{-3}=-2.513(3$ sigs, 3 places after decimal)

- $\log 1.1^{* 10^{-8}}=7.96$ (2 sigs, 2 places after decimal) $10^{-3.12}=7.6 * 10^{-4}$ (2 places after decimal, 2 sigs)

In general $\quad \mathrm{pX}=-\log \mathrm{X}$
and: $\quad \mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}$
and so: $\quad \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.00 \times 10^{-14}$ at $25^{\circ} \mathrm{C}$
Take the negative log of both sides

$$
\begin{aligned}
-\log \left(100^{-14}\right) & =-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+(-\log [\mathrm{OH}-]) \\
14 & =\mathrm{pH}+\mathrm{pOH} \\
\text { also: } 14 & =\mathrm{pK}_{\mathrm{a}}+\mathrm{pK}_{b}
\end{aligned}
$$

\section*{Equilibria Considerations Involving Weak Acids and Bases
 | Equilibria Considerations Involving |
| :---: |
| Weak Acids and Bases |}

Acid	Conjugate Base
acetic, $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	$\mathrm{CH}_{3} \mathrm{CO}_{2}$-, acetate
ammonium, $\mathrm{NH}_{4}{ }^{+}$	NH_{3}, ammonia
bicarbonate, $\mathrm{HCO}_{3}{ }^{-}$	$\mathrm{CO}_{3}{ }^{2-}$, carbonate
A weak acid (or bas a VERY small exte	is one that ionize (< 5\%).

[^0]pH of Common Substances

Figure 5.17 pH values of some common substances. Here the "bar" is colored red at one end and blue at the other. These are the colors of litmus paper, commonly used in the laboratory to decide if a soblue at the other. These are the colors of litmus paper, commonly used in the
lution is acidic (litmus is red) or basic (litmus is blue). (Charies D. Winters)

MAR

Equilibria Involving
Weak Acids and Bases

$\frac{\text { Consider acetic acid, } \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{HOAc})}{\rightleftharpoons} \mathrm{H}_{3} \mathrm{O}^{+}+$| $\mathrm{OAc}-$ |
| :---: |
| Conj. base |

$\mathrm{HOAc}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons$
Acid

$$
K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OAc}^{-}\right]}{[\mathrm{HOAc}]}=1.8 \times 10^{-5}
$$

(K is designated K_{a} for ACID)
Because $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$] and [$\left.\mathrm{OAc}-\right]$ are SMALL, $\mathrm{K}_{\mathrm{a}} \ll 1$.

$$
\begin{gathered}
\begin{array}{c}
\text { Equilibrium Constants } \\
\text { for Weak Acids }\left(K_{a}\right)
\end{array} \\
\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq}) \\
K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
\end{gathered}
$$

Weak acids have $\mathrm{K}_{\mathrm{a}}<1$
Leads to small $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and a pH of 2-7

MAR

K and Acid-Base Reactions

ACIDS	CONJUGATE BASES
STRONG	weak
\uparrow	\downarrow
weak	STRONG

In general, Reactions always go from the stronger $A-B$ pair (larger K) to the weaker $A-B$ pair (smaller K).

Equilibrium Constants
for Weak Acids and Bases

Important relations: $K_{a}{ }^{*} K_{b}=K_{w}$ and $p K_{a}+p K_{b}=14$

Equilibrium Constants
for Weak Bases $\left(K_{\mathrm{b}}\right)$

$\mathrm{B}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightleftarrows \mathrm{BH}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
$K_{\mathrm{b}}=\frac{\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]}$

Weak bases have $\mathrm{K}_{\mathrm{b}}<1$ Leads to small [$\mathrm{OH} \cdot]$ and a pH of 12-7

K and Acid-Base Reactions

A strong acid is 100% dissociated.

Therefore, a STRONG ACID - a good H^{+}donormust have a WEAK CONJUGATE BASE - a poor H^{+}acceptor.
$\underset{\text { STRONG A base }}{\mathrm{HNO}_{3}(\mathrm{aq})}+\underset{\text { biq }}{\mathrm{H}_{2} \mathrm{O}(\mathrm{liq})} \rightleftharpoons \underset{\text { acid }}{\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})}+\underset{\text { weak } \mathrm{B}}{\mathrm{NO}_{3}-(\mathrm{aq})}$

Every A-B reaction has two acids and two bases. Equilibrium always lies toward the weaker pair. Here K is very large... should write:
$\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{liq}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})$

K and Acid-Base Reactions

Acetic acid is only 0.42% ionized when [HOAc] = 1.0 M . It is a WEAK ACID
$\underset{\text { WEAK A }}{\mathrm{HOAc}}+\underset{\text { base }}{\mathrm{H}_{2} \mathrm{O}} \rightleftharpoons \underset{\text { acid }}{\mathrm{H}_{3} \mathrm{O}^{+}} \quad+\underset{\text { STRONG B }}{\mathrm{OAC}^{-}}$

Because $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is small, this must mean

1. $\mathrm{H}_{3} \mathrm{O}^{+}$is a stronger acid than HOAc
2. OAc - is a stronger base than $\mathrm{H}_{2} \mathrm{O}$
3. K for this reaction is small

Types of Acid/Base Reactions
4. Weak acid + weak base (WA + WB) reactions:

	H
: $\ddot{F}-\mathrm{H}$	$\begin{gathered} 1 \\ : N-H \end{gathered}$
Acid	Esse

Product cation = conjugate acid of weak base. Product anion = conjugate base of weak acid. pH of solution depends on relative strengths of cation and anion (larger K \rightarrow smaller K).

Types of Acid/Base Reactions

1. Strong acid + Strong base ($S A+S B$) reactions:
$\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{NaCl}(\mathrm{aq})$
$\mathrm{H}^{+}+\mathrm{Cl}^{-}+\mathrm{Na}^{+}+\mathrm{OH}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}^{+}+\mathrm{Cl}^{-}$
Net ionic equation:
$\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}(\mathrm{aq}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}$ (liq)
$K=1 / K_{w}=1 \times 10^{14} \quad$ very product favored $K!$
Mixing equal molar quantities of a strong acid and strong base produces a neutral solution. should write:
$\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{NaCl}(\mathrm{aq})$

Types of Acid/Base Reactions
3. Weak base + Strong acid (WB + SA) reactions:
$\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NH}_{3} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{4}{ }^{+}$
This is the reverse of the reaction of $\mathrm{NH}_{4}{ }^{+}$ (conjugate acid of NH_{3}) with $\mathrm{H}_{2} \mathrm{O}$.
$\mathrm{H}_{3} \mathrm{O}^{+}$stronger acid than $\mathrm{NH}_{4}{ }^{+}$
$K=1 / K_{a}=1.8 \times 10^{9} \quad$ very product favored K !
Mixing equal molar quantities of a strong acid and weak base produces
the base's conjugate acid. The solution is acidic.

Types of Acid/Base Reactions:
Summary

Characteristics of Acid-Base Reactions

			Species Present After Equal Molar Amounts
Type	Example	Net Ionic Equation	Are Mixed; pH

0.003 M

0.06 M
2.0 M
a pH meter
0.0001 M
 Equilibria
Involving A
Weak Acid

Determining the pH of an acetic acid solution

Equilibria Involving A Weak Acid

You have 1.00 M HOAc. Calc. the equilibrium concs. of $\mathrm{HOAc}, \mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{OAc}$ - and the pH .
$\mathrm{HOAc}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OAc}$
Step 2. Write \mathbf{K}_{a} expression
$K_{a}=1.8 \times 10^{-5}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OAc}^{-}\right]}{[\mathrm{HOAc}]}=\frac{\mathrm{x}^{2}}{1.00-\mathrm{x}}$
This is a quadratic equation; solve using the quadratic formula.

Equilibria Involving A Weak Acid

You have 1.00 M HOAc. Calc. the equilibrium concs. of HOAc, $\mathrm{H}_{3} \mathrm{O}^{+}$, OAc-, and the pH .
Step 3. Solve $\mathbf{K}_{\mathbf{a}}$ approximate expression:

$$
\begin{gathered}
K_{a}=1.8 \times 10^{-5}=\frac{\mathrm{x}^{2}}{1.00} \\
\mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=[\mathrm{OAc}-]=\left[1.8 \times 10^{-5} \cdot 1.00\right]^{1 / 2} \\
\mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=[\mathrm{OAc}-]=4.2 \times 10^{-3} \mathrm{M} \\
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(4.2 \times 10^{-3}\right)=2.37
\end{gathered}
$$

Equilibria Involving A Weak Acid

You have 1.00 M HOAc. Calc. the equilibrium concs. of $\mathrm{HOAc}, \mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{OAc}$-, and the pH .
Step 1. Define ICE equilibrium using Ka_{a}.

$$
\begin{array}{rcc}
\mathrm{HOAc}+\mathrm{H}_{2} \mathrm{O} & \rightleftharpoons & \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OAc} \\
{[\mathrm{HOAc}]} & {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]} & {[\mathrm{OAc}-]}
\end{array}
$$

initial
change
equilib

Note that we neglect $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$from $\mathrm{H}_{2} \mathrm{O}$. $H O A c=$ acetic acid, OAc- = acetate ion

Equilibria Involving A Weak Acid

You have 1.00 M HOAc. Calc. the equilibrium concs. of $\mathrm{HOAc}, \mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{OAc}$, and the pH .

Step 3. Solve \mathbf{K}_{a} expression

$$
K_{a}=1.8 \times 10^{-5}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OAc}^{-}\right]}{[\mathrm{HOAc}]}=\frac{\mathrm{x}^{2}}{1.00-\mathrm{x}}
$$

First assume \mathbf{x} is very small because K_{a} is so small. If so:

$$
K_{a}=1.8 \times 10^{-5}=\frac{\mathrm{x}^{2}}{1.00}
$$

Therefore,
$x=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=[\mathrm{OAC}]=\left[1.8 \times 10^{-5} \cdot 1.00\right]^{1 / 2}=\left[\mathrm{K}_{\mathrm{a}} \cdot \mathrm{C}_{\mathrm{a}}\right]^{1 / 2}$
$C_{a}=$ concentration (M) of acid

Equilibria Involving A Weak Acid

Consider the approximate expression:
$K_{a}=1.8 \times 10^{-5}=\frac{\mathrm{x}^{2}}{1.00} \quad \mathrm{X}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{K}_{\mathrm{a}} \cdot 1.00\right]^{1 / 2}$

For many weak acids

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=$[conj. base] $=\left[\mathrm{K}_{\mathrm{a}} \cdot \mathrm{C}_{\mathrm{a}}\right]^{1 / 2}$
where C_{a} = initial conc. of acid
Useful Rule of Thumb:
If $100 \cdot \mathrm{~K}_{\mathrm{a}}<\mathrm{C}_{\mathrm{a}}$, then $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{K}_{\mathrm{a}} \cdot \mathrm{C}_{\mathrm{a}}\right]^{1 / 2}$
or $\mathrm{pH}=-\log \left[\mathrm{K}_{\mathrm{a}} \cdot C_{a}\right]^{1 / 2}$

Equilibria Involving A Weak Acid Calculate the pH of a 0.0010 M solution of formic acid, $\mathrm{HCO}_{2} \mathrm{H}$.

$\mathrm{HCO}_{2} \mathrm{H}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons$	$\mathrm{HCO}_{2^{-}}+\mathrm{H}_{3} \mathrm{O}^{+}$
$\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-4}$	$100 * K_{\mathrm{a}}$ is not less
Approximate solution	than $\mathrm{C}_{\mathrm{a}}!$

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{K}_{\mathrm{a}} \cdot \mathrm{C}_{\mathrm{a}}\right]^{1 / 2}=4.2 \times 10^{-4} \mathrm{M}, \mathrm{pH}=3.37$
Exact Solution
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{HCO}_{2}\right]=3.4 \times 10^{-4} \mathrm{M}$
$\left[\mathrm{HCO}_{2} \mathrm{H}\right]=0.0010-3.4 \times 10-4=0.0007 \mathrm{M}$
$\mathrm{pH}=3.47$

Equilibria Involving A Weak Base
You have $0.010 \mathrm{M} \mathrm{NH}_{3}$. Calculate the pH .

$$
\begin{aligned}
& \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \\
& \mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}
\end{aligned}
$$

Step 1. Define equilibrium concs.
$\left[\mathrm{NH}_{3}\right] \quad\left[\mathrm{NH}_{4}{ }^{+}\right] \quad[\mathrm{OH}-]$
initial
change
equilib

Equilibria Involving A Weak Base
You have $\mathbf{0 . 0 1 0} \mathrm{M} \mathrm{NH}_{3}$. Calculate the pH .

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}{ }^{+}+\mathrm{OH}^{-}
$$

$$
\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}
$$

Step 3. Calculate pH
[OH] $=4.2 \times 10^{-4} \mathrm{M}$
so $\mathrm{pOH}=-\log [\mathrm{OH}]=3.37$
Because $\mathrm{pH}+\mathrm{pOH}=14$,
$\mathrm{pH}=10.63$
or $\mathrm{pH}=14+\log \left[\mathrm{K}_{\mathrm{b}}{ }^{\circ} \mathrm{C}_{\mathrm{b}}\right]^{1 / 2}=10.63$

Weak Bases

Equilibria Involving A Weak Base
You have $0.010 \mathrm{M} \mathrm{NH}_{3}$. Calculate the pH .

$$
\begin{aligned}
& \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}++\mathrm{OH}^{-} \\
& \mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}
\end{aligned}
$$

Step 2. Solve the equilibrium expression

$$
K_{b}=1.8 \times 10^{-5}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}=\frac{\mathrm{x}^{2}}{0.010-\mathrm{x}}
$$

Assume \mathbf{x} is small $\left(100 \cdot \mathrm{~K}_{\mathrm{b}}<\mathrm{C}_{\mathrm{b}}\right)$, so
$\mathbf{x}=\left[\mathrm{OH}^{-}\right]=\left[\mathrm{NH}_{4}+\right]=\left[\mathrm{K}_{\mathrm{b}} \cdot \mathrm{C}_{\mathrm{b}}\right]^{1 / 2}=4.2 \times 10^{-4} \mathrm{M}$
check: $\left[\mathrm{NH}_{3}\right]=0.010-4.2 \times 10^{-4} \approx 0.010 \mathrm{M}$
Valid approximation!
Exact solution with quadratic: $x=0.00042, x=-0.00043$

Overview: Calculating pH of Acids \& Bases
Strong acid: $\mathrm{pH}=-\log \mathrm{C}_{\mathrm{a}}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
Strong base:

$$
\mathrm{pH}=14+\log \mathrm{C}_{\mathrm{b}}=14+\log \left[\mathrm{OH}^{-1}\right]
$$

Weak acid:

$$
\mathrm{pH}=-\log \left[\mathrm{K}_{\mathrm{a}} \cdot \mathrm{C}_{\mathrm{a}}\right]^{1 / 2}\left(100 * K_{\mathrm{a}}<\mathrm{C}_{\mathrm{a}}\right)
$$

Weak base:

$$
\mathrm{pH}=14+\log \left[K_{b}{ }^{\circ} \mathrm{C}_{\mathrm{b}}\right]^{1 / 2}\left(100 * K_{b}<C_{b}\right)
$$

Memorize!

Acid-Base Properties of Salts

$M X+\mathrm{H}_{2} \mathrm{O}$----> acidic or basic solution?

Consider $\mathrm{NH}_{4} \mathrm{Cl}$

$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{Cl}-(\mathrm{aq})$
(a) Reaction of Cl - with $\mathrm{H}_{2} \mathrm{O}$

Cl- ion is a VERY weak base because its conjugate acid is strong.
Therefore, Cl- ----> neutral solution

Acid-Base Properties of Salts

Acid and Base Properties of Some Ions in Aqueous Solution

	Neu		Basic			Acidic
Anions	a^{-}	$\mathrm{NO}_{3}{ }^{-}$	$\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}$	CN^{-}	$\mathrm{SO}_{4}{ }^{2-}$	$\mathrm{HSO}_{4}{ }^{-}$
	Br^{-}	ClO_{4}^{-}	$\mathrm{HCO}_{2}{ }^{-}$	$\mathrm{PO}_{4}{ }^{3-}$	$\mathrm{HPO}_{4}{ }^{2-}$	$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
	I^{-}		$\mathrm{CO}_{3}{ }^{2-}$	$\mathrm{HCO}_{3}{ }^{-}$	$\mathrm{SO}_{3}{ }^{2-}$	$\mathrm{HSO}_{3}{ }^{-}$
				HS^{-}	OCl^{-}	
				$\mathrm{NO}_{2}{ }^{-}$		
Cations		Mg^{2+}	$\begin{aligned} & \left.\mathrm{Al(H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})^{2+} \\ & \text { and analogous ions } \end{aligned}$			$\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}$ and hydrated
	Na^{+}	Ca^{2+}				transition metal cations
		Ba^{2+}				$\left(\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right){ }^{3+}\right)$
						$\mathrm{NH}_{4}{ }^{+}$

Acid-Base Properties of Salts

Calculate the pH of a 0.10 M solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$. $\mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O}$---> neutral

$\mathrm{CO}_{3}^{2-}+$	$\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCO}_{3}{ }^{-}+\quad+\quad \mathrm{OH}^{-}$
base	acid
	acid
Step 2.	Solve the equilibrium expression

$$
K_{b}=2.1 \times 10^{-4}=\frac{\left[\mathrm{HCO}_{3}^{-}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{CO}_{3}{ }^{2-}\right]}=\frac{\mathrm{x}^{2}}{0.10-\mathrm{x}}
$$

Assume $0.10-\mathbf{x} \approx 0.10$, because $100 \cdot \mathrm{~K}_{\mathrm{b}}<\mathrm{C}_{\mathrm{b}}$ $x=\left[\mathrm{HCO}_{3}\right]=[\mathrm{OH}-]=\left[\mathrm{K}_{\mathrm{b}} \cdot \mathrm{C}_{\mathrm{b}}\right]^{1 / 2}=0.0046 \mathrm{M}$

Acid-Base Properties of Salts
$M X+\mathrm{H}_{2} \mathrm{O}$----> acidic or basic solution?
$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$----> $\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{Cl}(\mathrm{aq})$
(b) Reaction of NH_{4}^{+}with $\mathrm{H}_{2} \mathrm{O}$
$\mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O}--->\mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$
acid base base acid
$\mathrm{NH}_{4}{ }^{+}$ion is a moderate acid ($\mathrm{K}_{\mathrm{a}}=5.6 \times 10^{-10}$)
because its conjugate base is weak.
Therefore, $\mathrm{NH}_{4}{ }^{+}$----> acidic solution

Acid-Base Properties of Salts

Calculate the pH of a 0.10 M solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$.

$\mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O}$---> neutral

$\mathrm{CO}_{3^{2-}}+$	$\mathrm{H}_{2} \mathrm{O} \rightleftharpoons$	HCO_{3}	+
	acid $\mathrm{K}_{\mathrm{b}}=2.1$	acid	

Step 1. Set up ICE concentration table

$$
\left[\mathrm{CO}_{3}{ }^{2}\right]\left[\mathrm{HCO}_{3}^{-}\right] \quad[\mathrm{OH}-]
$$

initial
change
equilib
MAR

Acid-Base Properties of Salts

Calculate the pH of a 0.10 M solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$.
$\mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O}$---> neutral

$\mathrm{CO}_{3}{ }^{2-}+$	$\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \underset{\text { acid }}{\mathrm{HCO}_{3}{ }^{-}}+\underset{\text { acid }}{\mathrm{OH}^{-}}$
	$+\quad$base $\mathbf{K}_{\mathrm{b}}=2.1 \times 10^{-4}$
Step 3.	Calculate the pH

[OH] $=0.0046 \mathrm{M}$
$\mathrm{pOH}=-\log [\mathrm{OH}]=2.34$
$\mathrm{pH}+\mathrm{pOH}=14$,
so $\mathrm{pH}=11.66$, and the solution is \qquad .

Lewis Acids \& Bases

Lewis Acids \& Bases

New bond formed using electron pair from the Lewis base.
Coordinate covalent bond
Notice geometry change on reaction.

Lewis Acids \& Bases

Lewis Acids \& Bases

Add NH_{3} to light blue $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}---->$ light blue $\mathrm{Cu}(\mathrm{OH})_{2}$ and then deep blue $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$

Lewis Acids \& Bases

Lewis acid \& base theory explains
AMPHOTERIC nature of some metal hydroxides.
$\mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{H}^{+}$--> $\mathrm{Al}^{3+}+3 \mathrm{H}_{2} \mathrm{O}$
Here $\mathrm{Al}(\mathrm{OH})_{3}$ is a Brønsted base.
$\mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+\mathrm{OH}^{-}-\mathrm{Al}(\mathrm{OH})_{4}{ }^{-}$
Here $\mathrm{Al}(\mathrm{OH})_{3}$ is a Lewis acid.

$$
\mathrm{Al}^{3+} \leftarrow: \ddot{O}-\mathbf{H}^{-}
$$

Lewis Acids \& Bases

Formation of complex ions explains why you can dissolve a precipitate by forming a complex ion.
$\mathbf{A g C l}(\mathrm{s})+2 \mathbf{N H}_{3} \rightleftharpoons$
$\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}+\mathrm{Cl}^{-}$

MAR

Lewis Acids \& Bases

Many complex ions are very stable.
$\mathrm{Cu}^{2+}+4 \mathrm{NH}_{3} \rightleftharpoons \quad\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
K for the reaction is called

$$
\mathrm{K}_{\text {formation }}
$$

or a "formation constant"
Here $K_{f}=6.8 \times 10^{12}$. Reaction is strongly product-favored.

$$
\mathrm{K}_{\mathrm{f}}=\frac{\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}}{\left[\mathrm{Cu}^{2+}\right]\left[\mathrm{NH}_{3}\right]^{4}}
$$

Lewis Acids \& Bases

Formation of complex ions explains why you can dissolve a precipitate by forming a complex ion.

$$
\begin{aligned}
& \mathrm{AgCl}(\mathrm{~s}) \rightleftharpoons \mathrm{Ag}^{+}+\mathrm{Cl}^{-} \quad \mathrm{K}_{\mathrm{sp}}=1.8 \times 10^{-10} \\
& \mathrm{Ag}^{+}+2 \mathrm{NH}_{3} \rightleftharpoons \mathbf{A g}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+} \quad \mathrm{K}_{\text {form }}=1.6 \times 10^{7} \\
& \mathrm{AgCl}(\mathrm{~s})+2 \mathrm{NH}_{3} \rightleftharpoons \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}+\mathrm{Cl}^{-} \\
& \mathrm{K}_{\text {net }}=\mathrm{K}_{\mathrm{sp}} \bullet \mathrm{~K}_{\text {form }}=2.9 \times 10^{-3}
\end{aligned}
$$

Hints for This Chapter

$$
\begin{gathered}
\mathrm{pH}_{\text {(strong acid) }}=-\log \mathrm{C}_{\mathrm{a}} \\
\mathrm{pH}_{\text {(strong base) }}=14+\log \mathrm{C}_{\mathrm{b}} \\
\mathrm{pH}_{(\text {weak acid) }}=-\log \left[\mathrm{K}_{\mathrm{a}}{ }^{*} \mathrm{C}_{\mathrm{a}}\right]^{1 / 2} \\
\mathrm{pH}_{\text {(weak base) }}=14+\log \left[\mathrm{K}_{\mathrm{b}}^{*} \mathrm{C}_{\mathrm{b}}\right]^{1 / 2} \\
14=\mathrm{pH}+\mathrm{pOH}^{2} \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\mathrm{pK}_{\mathrm{b}} \\
\mathrm{~K}_{\mathrm{w}}=1.00 * 10-14=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{OH}]=\mathrm{K}_{\mathrm{a}}^{*} \mathrm{~K}_{\mathrm{b}}\left(25^{\circ} \mathrm{C}\right)
\end{gathered}
$$

Know equivalence point pH values for different titrations
Know how to use formation constants Understand Lewis acid/base theory

End of Chapter 14 Part I

See:

- Chapter Fourteen Part I Study Guide
- Chapter Fourteen Part I Concept Guide
- Types of Equilibrium Constants
- Important Equations (following this slide)
- End of Chapter Problems (following this slide)

Important Equations, Constants, and Handouts
from this Chapter:
$\mathrm{pH}_{\text {(strong acid) }}=-\log \mathrm{C}_{\mathrm{a}}$
$\mathrm{pH}_{\text {(strong base) }}=14+\log \mathrm{C}_{\mathrm{b}}$
$\mathrm{pH}_{\text {(weak acid) }}=-\log \left[\mathrm{K}_{\mathrm{a}}{ }^{*} \mathrm{C}_{\mathrm{a}}\right]^{1 / 2}$
$\mathrm{pH}_{\text {(weak base) }}=14+\log \left[\mathrm{K}_{\mathrm{b}}{ }^{*} \mathrm{C}_{\mathrm{b}}\right]^{1 / 2}$
$14=\mathrm{pH}+\mathrm{pOH}=\mathrm{pK}_{\mathrm{a}}+\mathrm{pK}_{\mathrm{b}}$
$\mathrm{K}_{\mathrm{w}}=1.00 * 10-14=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{OH} \cdot]=\mathrm{K}_{\mathrm{a}}{ }^{*} \mathrm{~K}_{\mathrm{b}}\left(25^{\circ} \mathrm{C}\right)$

$$
\begin{gathered}
\mathrm{HOAc}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OAc}^{-} \\
K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OAc}^{-}\right]}{[\mathrm{HOAc}]}
\end{gathered}
$$

$\mathrm{B}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightleftarrows \mathrm{BH}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

$$
K_{\mathrm{b}}=\frac{\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]}
$$

Acid-Base Theory: Brønsted theory, conjugate acid
and base, strong and weak acids and bases, know
the 8 strong acids and bases!, autoionization, Lewis
theory, electron pair acceptor and donator, salt
acidity/basicity, formation constants (K_{f})
Handouts:

- Manipulating Equilibrium Constant Expressions
- Types of Equilibrium Constants

MAR

- Table of K_{a} and K_{b} values in Problem Set \#2

End of Chapter Problems: Answers

1. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.8 \times 10^{-4} \mathrm{M},\left[\mathrm{OH}^{-}\right]=5.6 \times 10^{-11} \mathrm{M}$, acidic
2. 11.48
3. 3.0×10^{-10}
4. 2.1×10^{-4}
5. $0.0021 \mathrm{M}, 3.6 \times 10^{-4}\left(K_{\mathrm{a}}=3.0 \times 10^{-4}\right.$ using short method)
6. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=8.1 \times 10^{-11} \mathrm{M},\left[\mathrm{OH}^{-}\right]=1.2 \times 10^{-4} \mathrm{M}, K_{b}=9.7 \times 10^{-7}$
7. $\mathrm{Fe}^{2+}(\mathrm{aq})$ would be a Lewis acid, $\mathrm{CH}_{3} \mathrm{NH}_{2}$ would be a Lewis base

[^0]: a VERY small extent (< 5%).

