

Generally divide acids and bases into STRONG or WEAK categories.

STRONG ACID: HNO₃(aq) + H₂O(liq) \rightarrow

 $H_3O^+(aq) + NO_3^-(aq)$

HNO₃ is about 100% dissociated in water. Acids create hydronium when they react with water.

Strong and Weak Acids/Bases

Strong Base: 100% dissociated in water. NaOH(aq) \rightarrow Na⁺(aq) + OH·(aq) Other strong *monobasic* bases: KOH, LiOH

Ca(OH)₂ is a strong *dibasic* system: CaO (lime) + H₂O --> Ca(OH)₂ (slaked lime)

Memorize the three strong

monobasic bases!

Strong and Weak Acids/Bases

Weak base: less than 100% ionized in water

One of the best known weak bases is ammonia, $\ensuremath{\text{NH}}_3$

 $NH_3(aq) + H_2O(liq) \implies NH_4^+(aq) + OH^-(aq)$

H-Ö:

Н

àcid

ACID-BASE THEORIES

The Brønsted definition means NH_3 is a BASE in water - and water is itself an ACID

NH ₃ Base	+ $H_2O =$ Acid	── NH ₄ ⁺ Acid	+ OH Base
	H -N: H -N: H	H – Ö: I H	
	Base	Acid	

MAR

MAR

ACID-BASE THEORIES

 $\rm NH_3$ is a BASE in water - and water is itself an $\rm ACID$

 $NH_3(aq) + H_2O(\ell) \xrightarrow{} NH_4^+(aq) + OH^-(aq)$ Base

NH₃ / NH₄⁺ is a COnjugate pair - related by the gain or loss of H⁺

Every acid has a conjugate base - and vice-versa.

MAR

Conjugate Pairs

Page III-14a-2 / Chapter Fourteen Part I Lecture Notes

Calculating $[H_3O^+]$ & $[OH^-]$

You add 0.0010 mol of NaOH to 1.0 L of pure water. Calculate [H₃O⁺] and [OH-].

Solution

 $2 H_2O(liq) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$ Le Chatelier predicts equilibrium shifts to the

[H₃O⁺] < 10⁻⁷ at equilibrium. Set up an ICE concentration table.

Calculating [H₃O⁺] & [OH⁻]

You add 0.0010 mol of NaOH to 1.0 L of pure water. Calculate [H₃O⁺] and [OH-]. Solution

2 H₂O(liq) → H₃O⁺(aq) + OH (aq) initial change equilib

$$\begin{split} &\mathsf{K}_{w} \ = \ (x)(0.0010 + x) \\ &\mathsf{Because} \ x << 0.0010 \ \mathsf{M}, \ assume \ [\mathsf{OH}\text{-}] = 0.0010 \ \mathsf{M} \\ &\mathsf{K}_{w} = (x)(0.0010 + x) \approx (x)(0.0010) = \ [\mathsf{H}_{3}\mathsf{O}\text{+}](0.0010) \\ & \quad [\mathsf{H}_{3}\mathsf{O}\text{+}] \ = \ \mathsf{K}_{w} \ / \ 0.0010 \ = \ 1.0 \ x \ 10^{-11} \ \mathsf{M} \end{split}$$

MAR

A common way to express acidity and basicity is with pH

 $pH = -\log [H_3O^+]$

In a *neutral* solution, [H₃O⁺] = [OH⁻] = 1.0 x 10⁻⁷ at 25 °C pH = -log (1.00 x 10⁻⁷)

= - (-7.00) = 7.00 pH = 7.00 for neutral solutions!

ø**ren Sørensen**, creator of the pH scale

Basic solution	pH > 7	N N
Neutral	pH = 7	
Acidic solution	pH < 7	
Public Enemy are	e not scientis	sts!

[H₃O⁺], [OH⁻] and pH

If the pH of Diet Coke is 3.12, it is

Because pH = - log [H₃O⁺] then log [H₃O⁺] = - pH Take antilog and get $[H_3O^+] = 10$ -pH $[H_3O^+] = 10^{-3.12}$ = 7.6 x 10⁻⁴ M

pH of Common Substances

MAR

Acid	Conjugate Base
acetic, CH₃CO₂H	CH ₃ CO ₂ -, acetate
ammonium, NH ₄ +	NH ₃ , ammonia
bicarbonate, HCO3-	CO32-, carbonate

A weak acid (or base) is one that ionizes to a VERY small extent (< 5%).

Equilibrium Constants for Weak Acids (K_a)

 $HA(aq) + H_2O(\ell) \longrightarrow H_3O^+(aq) + A^-(aq)$

 $K_{\rm a} = \frac{[H_3 0^+][A^-]}{[HA]}$

Weak acids have $K_a < 1$ Leads to small [H₃O⁺] and a pH of 2 - 7

MAR

Equilibrium Constants for Weak Bases (K_b)

 $B(aq) + H_2O(\ell) \implies BH^+(aq) + OH^-(aq)$

 $K_{\rm b} = \frac{[\rm BH^+][\rm OH^-]}{[\rm B]}$

Weak bases have $K_{\rm b}$ < 1 Leads to small [OH-] and a pH of 12 - 7

K and Acid-Base Reactions	K and Acid-Base Reactions		
ACIDS CONJUGATE BASES STRONG weak ↑ ↓ weak STRONG	A strong acid is 100% dissociated. Therefore, a STRONG ACID - a good H ⁺ donor- must have a WEAK CONJUGATE BASE - a poor H ⁺ acceptor.		
general, Reactions always go from e stronger A-B pair (larger K) to	$HNO_3(aq) + H_2O(liq) \implies H_3O^+(aq) + NO_3^-(aq)$ STRONG A base acid weak B		
he weaker A-B pair (smaller K).	<i>Every</i> A-B reaction has two acids and two bases. Equilibrium always lies <i>toward the weaker pair</i> . Here K is <i>very</i> large should write:		
	HNO ₃ (aq) + H ₂ O(liq) \rightarrow H ₃ O ⁺ (aq) + NO ₃ -(aq)		

K and Acid-Base Reactions	Types of Acid/Base Reactions1. Strong acid + Strong base (SA + SB) reactions:HCl(aq) + NaOH(aq) \rightleftharpoons H2O(I) + NaCl(aq)		
Acetic acid is only 0.42% ionized when [HOAc] = 1.0 M. It is a WEAK ACID			
$HOAc + H_2O \rightleftharpoons H_3O^+ + OAc^-$	H⁺ + CI⁻ + Na⁺ + OH⁻ 🛁 H₂O + Na⁺ + CI⁻		
WEAK A base acid STRONG B	Net ionic equation:		
Because [H₂O⁺] is small, this must mean	$H^{+}(aq) + OH^{-}(aq) \rightleftharpoons H_2O(liq)$		
1 H_2O^+ is a stronger acid than HOAc	$K = 1/K_w = 1 \times 10^{14}$ very product favored K!		
2. OAc [.] is a stronger base than H_2O	Mixing equal molar quantities of a strong acid ar strong base produces a neutral solution.		
3. K for this reaction is small	<i>should write:</i> MAR HCI(aq) + NaOH(aq) \rightarrow H ₂ O(I) + NaCI(aq)		

2. Weak acid + Stror	ng base (WA + SB) reactions:
CH₃CO₂H + OH 🗧	[≥] H₂O + CH₃CO₂ [.]
This is the reverse of (conjugate base) v	of the reaction of CH ₃ CO ₂ - with H ₂ O.
OH- stronger base tl	han CH ₃ CO ₂ -

the acid's conjugate base. The

solution is basic.

MAR

MAR

MAR

Types of Acid/Base Reactions

3. Weak base + Strong acid (WB + SA) reactions:

 $H_3O^+ + NH_3 \implies H_2O + NH_4^+$

This is the reverse of the reaction of NH_4^+ (conjugate acid of NH_3) with H_2O . H_3O^+ stronger acid than NH_4^+

K = 1/K_a = 1.8 x 10⁹ very product favored K!

Mixing equal molar quantities of a strong acid and weak base produces the base's conjugate acid. The solution is acidic.

MAR

Equilibria Involving A Weak Acid

You have 1.00 M HOAc. Calc. the equilibrium concs. of HOAc, H₃O⁺, OAc⁻, and the pH.

HOAC +
$$H_2O \implies H_3O^+ + OAC^-$$

Step 2. Write K_a expression

$$K_a = 1.8 \times 10^{-5} = \frac{[\text{H}_3\text{O}^+][\text{OAc}^-]}{[\text{HOAc}]} = \frac{x^2}{1.00 - x}$$

This is a quadratic equation; solve using the quadratic formula.

MAR

You have 1.00 M HOAc. Calc. the equilibrium concs. of HOAc, H₃O⁺, OAc⁻, and the pH.

Step 3. Solve K_a expression

$$K_a = 1.8 \text{ x } 10^{-5} = \frac{[\text{H}_3\text{O}^+][\text{OAc}^-]}{[\text{HOAc}]} = \frac{\text{x}^2}{1.00 - \text{x}}$$

First assume x is very small because K_a
is so small. If so:

is so small. If so: 1.9×10^{-5}

$$K_a = 1.8 \times 10^{\circ} = \frac{1.00}{1.00}$$

 C_a = concentration (M) of acid

Therefore,

 $\mathbf{x} = [H_3O^+] = [OAc^-] = [1.8x10^{-5} \cdot 1.00]^{1/2} = [K_a \cdot C_a]^{1/2}$

MAR

Equilibria Involving A Weak Acid You have 1.00 M HOAc. Calc. the equilibrium concs. of HOAc, H_3O^+ , OAc⁻, and the pH.

Step 3. Solve K_a approximate expression:

$$K_a = 1.8 \times 10^{-5} = \frac{x^2}{1.00}$$

 $x = [H_3O^+] = [OAc^-] = [1.8x10^{-5} \cdot 1.00]^{1/2}$ $\mathbf{x} = [H_3O^+] = [OAc^-] = 4.2 \times 10^{-3} \text{ M}$ $pH = -\log [H_3O^+] = -\log (4.2 \times 10^{-3}) = 2.37$

> Exact solution with quadratic: x = 0.0042, x = -0.0043MAR

Equilibria Involving A Weak Acid

Consider the approximate expression:

$$K_a = 1.8 \ge 10^{-5} = \frac{x^2}{1.00}$$
 $x = [H_3O^+] = [K_a \cdot 1.00]^{1/2}$

For many weak acids

 $[H_3O^+] = [conj. base] = [K_a \cdot C_a]^{1/2}$

where C_a = initial conc. of acid

Useful Rule of Thumb:

If
$$100 \cdot K_a < C_a$$
, then $[H_3O^+] = [K_a \cdot C_a]^{1/2}$
or pH = - log $[K_a \cdot C_a]^{1/2}$

Equilibria Involving A Weak Base	Equilibria Involving A Weak Base
You have 0.010 M NH₃. Calculate the pH.	You have 0.010 M NH ₃ . Calculate the pH.
$NH_3 + H_2O \implies NH_4^+ + OH^-$	$NH_3 + H_2O \implies NH_4^+ + OH^-$
K _b = 1.8 x 10 ⁻⁵	K _b = 1.8 x 10 ⁻⁵
Step 1. Define equilibrium concs.	Step 2. Solve the equilibrium expression
[NH₃] [NH₄⁺] [OH·]	$K_b = 1.8 \text{ x } 10^{-5} = \frac{[\text{NH}_4^+][\text{OH}^-]}{[\text{NH}_3]} = \frac{\text{x}^2}{0.010 - \text{x}}$
initial	Assume x is small (100• $K_b < C_b$), so
change	x = [OH·] = [NH ₄ +] = [K _b • C _b] ^{1/2} = 4.2 x 10 ⁻⁴ M
equilib	check: [NH ₃] = 0.010 - 4.2 x 10 ⁻⁴ ≈ 0.010 M
	MAR Exact solution with guadratic: x = 0.00042 x = -0.00043

MAR

MAR

Equilibria Involving A Weak Base You have 0.010 M NH₃. Calculate the pH. $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$ Strong base: K_b = 1.8 x 10⁻⁵ Step 3. Calculate pH [OH-] = 4.2 x 10-4 M Weak acid: so $pOH = -\log [OH^{-}] = 3.37$ Because pH + pOH = 14, pH = 10.63 Weak base: or pH = 14 + log [K_b•C_b]^{1/2} = 10.63

Overview: Calculating pH of Acids & Bases

Strong acid: $pH = -\log C_a = -\log [H_3O^+]$

 $pH = 14 + \log C_{b} = 14 + \log [OH^{-1}]$

 $pH = -\log [K_a \cdot C_a]^{1/2} (100 * K_a < C_a)$

```
pH = 14 + \log [K_b \cdot C_b]^{1/2} (100 * K_b < C_b)
```

Memorize!

Acid-Base Properties of Salts

MX + H₂O ----> acidic or basic solution? Consider NH₄CI $NH_4Cl(aq) ----> NH_4^+(aq) + Cl^-(aq)$ (a) Reaction of CI- with H₂O CI + H_2O ----> HCI + OHacid acid base base CI- ion is a VERY weak base because its conjugate acid is strong. Therefore, CI- ----> neutral solution

Acid-Base Properties of Salts

MX + H₂O ----> acidic or basic solution? NH₄Cl(aq) ----> NH₄⁺(aq) + Cl⁻(aq) (b) Reaction of NH_{4^+} with H_2O $NH_{4^{+}} + H_{2}O ----> NH_{3} + H_{3}O^{+}$ acid base base acid NH₄⁺ ion is a moderate acid (K_a = 5.6 x 10⁻¹⁰) because its conjugate base is weak. Therefore, NH_4^+ ----> acidic solution

MAR

		Acid in A	and Base Properties of Some Ions ueous Solution			
	Neutr	al	Basic			Acidic
Anions	Cl - Br- I-	N03 ⁻ Cl04 ⁻	CH ₃ CO ₂ HCO ₂ CO ₃ ² S ² F	CN PO4 ³ HCO3 HS NO2	S04 ²⁻ HP04 ²⁻ S03 ²⁻ OCL ⁻	HS04 ⁻ H ₂ P04 ⁻ HS03 ⁻
Cations	Li ⁺ Na ⁺ K ⁺	Mg ²⁺ Ca ²⁺ Ba ²⁺	Al(H₂0)₅(0 and anal	H) ²⁺ ogous ions		Al(H ₂ 0) ₆ ³⁺ and hydrated transition metal cations (Fe(H ₂ 0) ₆ ³⁺) NH ₄ ⁺

MAR

Acid-Base Properties of Salts

Calculate the pH of a 0.10 M solution of Na₂CO₃.

Na⁺ + H₂O> neutral							
CO32- +	H₂O <	HCO₃-	+	OH-			
base	acid	acid		base			
	$K_{\rm b} = 2.1 \times 10^{-4}$						
Step 1.	Set up ICE concentration table						
	[CO ₃ ²⁻]	[HCO₃·]	[OH	-]			
initial							
change							
equilib							

MAR

Acid-Base Properties of Salts

Calculate the pH of a 0.10 M solution of Na₂CO₃. Na⁺ + H₂O ---> neutral

 CO_3^{2} + $H_2O \rightleftharpoons HCO_3^{-1}$ ОH + acid acid base base $K_{b} = 2.1 \times 10^{-4}$

Step 2. Solve the equilibrium expression

 $K_b = 2.1 \text{ x } 10^{-4} = \frac{[\text{HCO}_3^-][\text{OH}^-]}{[\text{CO}_3^{-2}]} = \frac{\text{x}^2}{0.10} - \frac{1}{10} = \frac{1}{10} - \frac{1}{10}$

0.10 - x

Assume 0.10 - x \approx 0.10, because 100 · K_b < C_b $x = [HCO_3] = [OH] = [K_b \cdot C_b]^{1/2} = 0.0046 M$

MAR

Exact solution with quadratic: x = 0.0045, x = -0.0047 MAR

Acid-Base Properties of Salts

Calculate the pH of a 0.10 M solution of Na₂CO₃. Na⁺ + H₂O ---> neutral

```
CO_3^{2-} + H_2O \rightleftharpoons HCO_3^{-}
                                           OH-
           acid acid
base
                                           base
           K_{b} = 2.1 \times 10^{-4}
Step 3. Calculate the pH
[OH-] = 0.0046 M
pOH = -\log [OH] = 2.34
pH + pOH = 14,
so pH = 11.66, and the solution is _
     or pH = 14 + log [K_b \circ C_b]^{1/2} = 11.66
```

Lewis Acids & Bases

Nickel bis(dimethylglyoximate)

Clifford and Aiden with red Nickel bis(dimethylglyoximate) solution (April 2023)

Lewis Acids & Bases

Lewis acid = electron pair acceptor (BF₃)

Lewis base = electron pair donor (NH₃)

Page III-14a-11 / Chapter Fourteen Part I Lecture Notes

Hints for This Chapter

pH_(strong acid) = - log C_a $pH_{(strong base)} = 14 + log C_b$ $pH_{(weak acid)} = - \log [K_a C_a]^{1/2}$ $pH_{(weak base)} = 14 + \log [K_b * C_b]^{1/2}$ $14 = pH + pOH = pK_a + pK_b$ $K_w = 1.00 * 10^{-14} = [H_3O^+][OH^-] = K_a^*K_b$ (25 °C) Know equivalence point pH values for different titrations Know how to use formation constants

Understand Lewis acid/base theory

MAR

End of Chapter 14 Part I

See:

- Chapter Fourteen Part I Study <u>Guide</u>
- <u>Chapter Fourteen Part I Concept</u> <u>Guide</u>
- <u>Types of Equilibrium Constants</u> Important Equations (following
- this slide) · End of Chapter Problems (following this slide)

MAR

End of Chapter Problems: Answers

- 1. $[H_3O^+] = 1.8 \times 10^{-4} \text{ M}, [OH^-] = 5.6 \times 10^{-11} \text{ M}, \text{ acidic}$
- 2. 11.48 3. 3.0 x 10⁻¹⁰ 4. 2.1 x 10⁻⁴

- 0.0021 M, 3.6 x 10⁻⁴ (K_a = 3.0 x 10⁻⁴ using short method)
 [H₃O⁺] = 8.1 x 10⁻¹¹ M, [OH⁻] = 1.2 x 10⁻⁴ M, K_b = 9.7 x 10⁻⁷
- 7. Fe2+(aq) would be a Lewis acid, CH3NH2 would be a Lewis base