

CH 223: Lectures and Labs

Lectures: MWF from 9 - 9:50 AM in AC 1303 (this room)

- Lectures recorded, available soon afterwards
- Lecture notes to print available (under "Problem Sets and Handouts", <u>mhchem.org/223</u>), get CH 223 Companion as soon as possible

Labs (Section 01): Mondays from 1:10 - 5 PM

- Start in room AC 2501 ("the recitation")
- Move to AC 2507 ("the lab") around 3 PM
- For first day, bring a printed copy of the "Determination of an Equilibrium Constant (in class)" Lab (mhchem.org/223), a pair of safety glasses (Dollar store ok) and your calculator

MAR

...more on Monday afternoon

Chemical Equilibrium Fe³⁺ + SCN⁻ ⇒ FeSCN²⁺

After a period of time, the concentrations of reactants and products are constant. The forward and reverse reactions continue after equilibrium is attained.

MAR

MAR

Phase changes: $H_2O(s) \rightleftharpoons H_2O(liq)$

Formation of stalactites and stalagmites: CaCO₃(s) + H₂O(liq) + CO₂(g) ← Ca²+(aq) + 2 HCO₃⁻(aq)


```
For any type of chemical equilibrium of the
type
a A + b B \rightleftharpoons c C + d D
the following is a CONSTANT (at a given 7)
K = \frac{[C]^{c} [D]^{d}}{[A]^{a} [B]^{b}} conc. of reactants
equilibrium constant
```

If K is known, we can predict concentrations of products or reactants.

The Equilibrium Constant: Example

Equilibrium constants, K, come from *kinetic* rate constants, k

Example: For 2 $NO_{2(g)} \rightleftharpoons N_2O_{4(g)}$,

rate_f = k_f[NO₂]²

 $rate_r = k_r[N_2O_4]$

When rates equal, rate_f = rate_r, and

 $\mathbf{k}_{\mathbf{f}}[\mathbf{NO}_2]^2 = \mathbf{k}_{\mathbf{r}}[\mathbf{N}_2\mathbf{O}_4]$

 $[N_2O_4]/[NO_2]^2 = k_f/k_r = K$ (equilibrium)

Product of two constants (k_f & k_r) is itself a constant (K)!

MAR

MAR

The Equilibrium Constant: Example

The Equilibrium Constant: Example

Determining K

 $2 \text{ NOCI}(g) \rightleftharpoons 2 \text{ NO}(g) + \text{Cl}_2(g)$ Place 2.00 mol of NOCI is a 1.00 L flask. At equilibrium you find 0.66 mol/L of NO. Calculate K. Solution Set of a table of concentrations (ICE) [NOCI] [NO] $[Cl_2]$ Initial 2.00 0 0 Change Equilibrium 0.66

MAR

Determining K

$2 \operatorname{NOCI}(g) \rightleftharpoons 2 \operatorname{NO}(g) + \operatorname{Cl}_2(g)$
Place 2.00 mol of NOCI is a 1.00 L flask. At equilibrium you find 0.66 mol/L of NO. Calculate K.
Solution
Set of a table of concentrations (ICE)

	[NOCI]	[NO]	[Cl ₂]
Initial	2.00	0	0
Change	-0.66	+0.66	+0.33
Equilibrium	1.34	0.66	0.33

How to remember ICE:

MAR

Determining K $2 \text{ NOCI}(g) \rightleftharpoons 2 \text{ NO}(g) + \text{CI}_2(g)$ [NOCI] [NO] [Cl₂] Initial 2.00 0 0 -0.66 +0.66 +0.33 Change Equilibrium 1.34 0.66 0.33 $\mathbf{K} = \frac{[\mathrm{NO}]^2 [\mathrm{Cl}_2]}{[\mathrm{NOCl}]^2}$ $K = \frac{[NO]^{2}[Cl_{2}]}{[NOC1]^{2}} = \frac{(0.66)^{2}(0.33)}{(1.34)^{2}} = 0.080$

MAR

MAR

Writing and Manipulating K Expressions

Adding equations for reactions

$$S(s) + O_2(g) \rightleftharpoons SO_2(g) \quad K_1 = [SO_2] / [O_2]$$

$$SO_2(g) + 1/2 O_2(g) \implies SO_3(g)$$

$$K_2 = [SO_3] / [SO_2][O_2]^{1/2}$$

NET EQUATION

S(s) + 3/2 O₂(g) ⇒ SO₃(g)

$$K_{net} = \frac{[SO_3]}{[O_2]^{3/2}} = K_1 \bullet K_2$$

Changing coefficients

$$S(s) + 3/2 O_2(g) \rightleftharpoons SO_3(g) \qquad K_{old} = \frac{[SO_3]}{[O_2]^{3/2}}$$

$$2 S(s) + 3 O_2(g) \implies 2 SO_3(g)$$

$$K_{new} = \frac{[SO_3]^2}{[O_2]^3}$$
$$K_{new} = \frac{[SO_3]^2}{[O_2]^3} = (K_{old})^2$$

MAR

MAR

MAR

Writing and Manipulating K Expressions

Changing direction $\mathbf{S}(\mathbf{s}) + \mathbf{O}_2(\mathbf{g}) \rightleftharpoons \mathbf{SO}_2(\mathbf{g}) \qquad K = \frac{[SO_2]}{[O_2]}$ $\mathbf{SO}_2(\mathbf{g}) \rightleftharpoons \mathbf{S}(\mathbf{s}) + \mathbf{O}_2(\mathbf{g}) \qquad K_{new} = \frac{[O_2]}{[SO_2]}$ and: $K_{new} = \frac{[O_2]}{[SO_2]} = \frac{1}{K_{old}}$

See Manipulating Equilibrium Constant Expressions

Kp Expressions

We have been writing K in terms of M (mol/L), designated by K_c

Equilibrium constants expressed in terms of

gases designated K_p where all pressures in atm (760 mm Hg = 1 atm)

For: $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$

$$K_{c} = \frac{[NH_{3}]^{2}}{[N_{2}][H_{2}]^{3}}$$
 $K_{p} = \frac{P_{NH_{3}}^{2}}{P_{N_{2}}P_{H_{2}}^{3}}$

MAR

Converting K_c Into K_p

 $K_p = K_c(RT)^{\Delta n}$

T = Temperature (K) R = 0.082057 L atm mol⁻¹ K⁻¹ Δ n = change in moles of gas *Example:* N₂(g) + 3 H₂(g) \rightleftharpoons 2 NH₃(g) Δ n = 2 - 4 = -2 see: *Types of Equilibrium Constants*

MAR

The Meaning of K

Can tell if a reaction is product-favored or reactant-favored. For: $N_{r}(\alpha) + 3H_{r}(\alpha) \Longrightarrow 2NH_{r}(\alpha)$

or:
$$N_2(g) \neq 3 \Pi_2(g) \leftarrow 2 \ N \Pi_3(g)$$

[NIL] 1^2

$$K_c = \frac{[1 \mathbf{H}_3]}{[\mathbf{N}_2][\mathbf{H}_2]^3} = 3.5 \text{ x } 10^8$$

Conc. of products is **much greater** than that of reactants at equilibrium. The reaction is strongly **productfavored**. The Meaning of K

For: $AgCl(s) \rightleftharpoons Ag^{+}(aq) + Cl^{-}(aq)$

 $K_{\rm c}$ = [Ag⁺] [Cl⁻] = 1.8 x 10⁻⁵

Conc. of products is **much less** than that of reactants at equilibrium.

The reaction is strongly reactant-favored.

The reverse reaction Ag+(aq) + Cl-(aq) ⇒ AgCl(s) is product-favored,

 $K_{rev} = 1/1.8 \times 10^{-5} = 5.6 \times 10^{4}$

Product-favored (K<1) Products Time -Product-favored K > 1 Product-favored K > 1 Product-favored K > 1

Product- or Reactant Favored

MAR

The Reaction Quotient, Q

All reacting chemical systems can be characterized by their **REACTION QUOTIENT, Q.**

For: $a A + b B \rightleftharpoons c C + d D$

Under Any React	tion Conditions
Reaction quotient =	Product concentrations $Q = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$ Reactant concentrations

If Q = K, then system is at equilibrium. If $Q \neq K$, then system is not at equilibrium

MAR

MAR

The Reaction Quotient, Q

MAR

The Reaction Quotient, Q

see Understanding K and Q Handout

To [iso]! Q = 2.3, Q < K, reaction will shift to "right" (product side, or [iso])

Typical Calculations

Place 1.00 mol each of H_2 and I_2 in a 1.00 L flask. Calc. equilibrium concentrations.

$H_2(g) + I_2(g) \implies 2 HI(g), K_c = 55.3$

Step 1. Set up ICE table to define EQUILIBRIUM concentrations.

[H₂] [I₂] [HI]

Initial Change

Equilib

where \mathbf{x} is defined as am't of H_2 and I_2 consumed on approaching equilibrium.

MAR

$H_2(g) + I_2(g) \implies 2 HI(g), K_c = 55.3$

Step 2. Put equilibrium concentrations into K_c expression.

$$K_c = \frac{[2x]^2}{[1.00-x][1.00-x]} = 55.3$$

 $H_2(g) + I_2(g) \implies 2 HI(g), K_c = 55.3$

Step 3. Solve K_c expression - take square root of both sides. $7.44 = \frac{2x}{2}$

 $7.44 = \frac{2x}{1.00 - x}$ 7.44 (1.00 - x) = 2x 7.44 - 7.44x = 2x x = 7.44 / 9.44 = 0.788Therefore, at equilibrium $[H_2] = [I_2] = 1.00 - x = 0.21 \text{ M}$

[HI] = 2x = 1.58 M

MAR

Nitro N	gen Dioxide Equ ₂O₄(g)	uilibrium D ₂ (g)				
$K_c = \frac{[N]}{[N]}$	$\frac{O_2]^2}{O_4} = 0.0059$	at 298 K				
If initial concentration of N_2O_4 is 0.50 M, what are the equilibrium concentrations?						
Step 1. Set up an equilibrium table						
	[N ₂ O ₄]	[NO ₂]				
Initial	0.50	0				
Change						

MAR

Equilib

MAR

Nitrogen Dioxide Equilibrium $N_2O_4(g) \implies 2 NO_2(g)$ $K_c = \frac{[NO_2]^2}{[N_2O_4]} = 0.0059 \text{ at } 298 \text{ K}$

If initial concentration of N₂O₄ is 0.50 M, what are the equilibrium concentrations? Sot up an aquilibrium table Stop 1

Step 1.	. Set up all equilibrium table				
	[N ₂ O ₄]	[NO ₂]			
Initial	0.50	0			
Change	-x	+2x			
Equilib	0.50 - x	2x			

MAR

Nitrogen Dioxide Equilibrium $N_2O_4(g) \implies 2 NO_2(g)$

Step 2. Substitute into K_c expression and solve. $K_c = 0.0059 = \frac{[\text{NO}_2]^2}{100}$ $(2x)^{2}$

 $[N_2O_4]^{-}$ (0.50 - x) $0.0059(0.50 - x) = 4x^2$ Rearrange: $0.0029 - 0.0059x = 4x^2$ $4x^2 + 0.0059x - 0.0029 = 0$

This is a QUADRATIC EQUATION

c = -0.0029

 $ax^{2} + bx + c = 0$

CH 223: report both values of x when performing quadratic calculations

Nitrogen Dioxide Equilibrium $N_2O_4(g) \iff 2 NO_2(g)$ Solve the quadratic equation for x.

 $ax^2 + bx + c = 0$ a = 4 b = 0.0059c = -0.0029 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $-0.0059 \pm \sqrt{(0.0059)^2 - 4(4)(-0.0029)}$ 2(4) $x = -0.00074 \pm 1/8(0.046)^{1/2} = -0.00074 \pm 0.027$

MAR

Nitrogen Dioxide Equilibrium $N_2O_4(g) \iff 2 NO_2(g)$

$$x = \frac{-0.0059 \pm \sqrt{(0.0059)^2 - 4(4)(-0.0029)}}{2(4)}$$

$$x = -0.00074 \pm 1/8(0.046)^{1/2} = -0.00074 \pm 0.027$$

x = 0.026 or -0.028

But a negative value is not reasonable.

Conclusion:
$$x = 0.026$$

[N₂O₄] = 0.50 - $x = 0.47$ M
[NO₂] = 2 $x = 0.052$ M

MAR

x

CH 223: report both values of x when performing quadratic calculations

Le Chatelier's Principle

Temperature, changes in volume, changes in pressure and changes in concentration affect equilibria.

The outcome is governed by LE **CHATELIER'S PRINCIPLE**

"...if a system at equilibrium is disturbed, the system tends to shift its equilibrium position to counter the effect of the disturbance." MAR

Henri Le Chatelier, 1850 - 1936

Temperature effects change the numeric value of K

Consider the fizz in a soft drink $CO_2(g) + H_2O(liq) \rightleftharpoons CO_2(aq) + heat$

Decrease T. What happens to equilibrium position? To value of K?

 $K = [CO_2] / P (CO_2)$

K increases as T goes down because [CO₂] increases and P(CO₂) decreases.

Increase T. Now what? Equilibrium shifts left and K decreases. see: Le Chatelier's Guide

Temperature Effects on Equilibrium

 N_2O_4 (colorless) + heat \rightleftharpoons 2 NO₂ (brown) ΔH° = + 57.2 kJ (endothermic)

 $K_c = \frac{[NO_2]^2}{[N_2O_4]}$

 $K_c = 0.00077 \text{ at } 273 \text{ K}$ $K_c = 0.0059 \text{ at } 298 \text{ K}$

K changes with temperature

Volume & Pressure Effects on Equilibrium

N₂O₄(g) + heat → 2 NO₂(g) colorless gas brown gas endothermic

Volume and Pressure changes affect equilibrium

Larger volume / Less Pressure = more molecules

Smaller volume / Higher Pressure = fewer molecules MAR

 $N_2(g) + 3 H_2(g) \implies 2 NH_3(g)$ K = 3.5 x 10⁸ at 298 K

EQUILIBRIUM AND EXTERNAL EFFECTS

Concentration changes ---> no change in K - only the *position* of equilibrium changes.

We can use the "water U-tube" to demonstrate this phenomena (and connect to Haber-Frisch)

MAR

MAR

Adding a "product" to a chemical system.

 $\begin{array}{ll} \mbox{Haber-Frisch reaction: adding NH_3,} \\ \mbox{reaction moves to left} & $N_2(g) + 3 \ H_2(g) \rightleftharpoons 2 \ NH_3(g)$ \\ \end{array}$

Removing a "product" from a chemical system.

Haber-Frisch reaction: removing NH₃, reaction moves to right $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$

MAR

MAR

Butane *⇒* Isobutane

Assume you are at equilibrium with [iso] = 1.25 M and [butane] = 0.50 M. Now add 1.50 M butane. When the system comes to equilibrium again, what are [iso] and [butane]? K = 2.50

MAR

Butane < Isobutane

Assume you are at equilibrium with [iso] = 1.25 M and [butane] = 0.50 M. Now add 1.50 M butane. When the system comes to equilibrium again, what are [iso] and [butane]? K = 2.50

Solution

Calculate Q immediately after adding more butane and compare with K.

$$Q = \frac{[\text{isobutane}]}{[\text{butane}]} = \frac{1.25}{0.50 + 1.50} = 0.625$$

Q is *LESS THAN* K. Therefore, the reaction will shift to the _____.

Butane *⇒* Isobutane

You are at equilibrium with [iso] = 1.25 M and [butane] = 0.50 M. Now add 1.50 M butane. Solution

Q is less than K, so equilibrium shifts right away from butane and toward isobutane. Set up concentration (ICE) table

[butane]

[isobutane]

Initial Change Equilibrium

Butane 辛 Isobutane

You are at equilibrium with [iso] = 1.25 M and [butane] = 0.50 M. Now add 1.50 M butane. Solution

$$K = 2.50 = \frac{\text{[isobutane]}}{\text{[butane]}} = \frac{1.25 + x}{2.00 - x}$$

x = 1.07 M

At the new equilibrium position,

[butane] = 0.93 M and [isobutane] = 2.32 M

Equilibrium has shifted toward isobutane.

MAR

MAR

Le Chatelier's Principle -**Overview**

Change T changes the value of K

changes observed in P, V or concentrations at equilibrium

Add or take away reactant or product

- · K does not change
- · Reaction adjusts to new equilibrium "position"

Use a catalyst

• reaction comes more quickly to equilibrium. K not changed.

End of Chapter 13

See:

- Chapter Thirteen Study Guide
- <u>Chapter Thirteen Concept Guide</u>
- Types of Equilibrium Constants
- · Important Equations (following this slide)
- · End of Chapter Problems (following this slide)

Important Equations, Constants, and Handouts from this Chapter:

> for: a A + b B ⇒ c C + d D conc. of products [C]^c [D]^d К =

R = 0.082057 L atm mol-1 K-1

Product concentrations Reaction quotient = $Q = \frac{[C]^{c}[D]^{d}}{C}$ $Q = \frac{[A]^{a}[B]^{b}}{[A]^{a}[B]^{b}}$ Reactant concent

Handouts.

2. 3.

4. 5.

• Manipulating Equilibrium Constant Expressions · Types of Equilibrium Constants

End of Chapter Problems: Answers

[I₂] = 0.00614 M, [I] = 0.00480 M

a. right b. left c. right d. left

 K_c = [CO]² / [CO2] or K_p = P_{CO}^2 / P_{CO2} No, Q < K, reaction will proceed to the right (more products) K = 1.2

MAR

Le Chatelier's Principle

End of Chapter Problems: Test Yourself

- Write an equilibrium constant expression for the following reaction: C(s) + CO_2(g) \rightleftarrows 2 CO(g) 1.
- 2. K = 5.6 x 10⁻¹² at 500 K for the dissociation of iodine molecules to iodine atoms: I2(g) \rightleftarrows 2 I(g) A mixture has [I2] = 0.020 mol/L and [I] = 2.0 x 10^{-8} mol/ L. Is the reaction at equilibrium (at 500 K)? If not, which way must the reaction proceed to reach equilibrium?
- 3. The reaction: $PCI_5(g) \rightleftharpoons PCI_3(g) + CI_2(g)$ was examined at 250 °C. At equilibrium, $[PCl_5] = 4.2 \times 10^{.5} \text{ mol/L}$, $[PCl_3] = 1.3 \times 10^{.2} \text{ mol/L}$, and $[Cl_2] = 3.9 \times 10^{.3} \text{ mol/L}$. Calculate K for the reaction. 4. The equilibrium constant for the dissociation of iodine molecules to iodine
- atoms: $I_2(g) \rightleftharpoons 2 I(g)$ is 3.76 x 10-3 at 1000 K. Suppose 0.105 mol of I_2 is placed in a 12.3 L flask at 1000 K. What are the concentrations of I_2 and I
- block and 120 model to equilibrium? Dinitrogen trioxide decomposes to NO and NO₂ in an endothermic process $(\Delta H = 40.5 \text{ kJ/mol}): N_2O_3(g) \approx NO(g) + NO_2(g)$ Predict the effect of the 5. following changes on the position of the equilibrium (left, right, or no change): b. adding more $N_2O_3(g)$ b. adding more $N_2O_3(g)$ c. increasing the volume of the reaction flask d. lowering the temperature

MAR