

CHEMICAL EQUILIBRIUM
 $\rightleftharpoons=$ Bi-directional
 arrow

CH 223: Lectures and Labs

Lectures: MWF from 9-9:50 AM in AC 1303 (this room)

- Lectures recorded, available soon afterwards
- Lecture notes to print available (under "Problem Sets and Handouts", mhchem.org/223), get CH 223 Companion as soon as possible

Labs (Section 01): Mondays from 1:10-5 PM

- Start in room AC 2501 ("the recitation")
- Move to AC 2507 ("the lab") around 3 PM
- For first day, bring a printed copy of the "Determination of an Equilibrium Constant (in class)" Lab (mhchem.org/223), a pair of safety glasses (Dollar store ok) and your calculator

MAR

MAR

Chemical Equilibrium
$\mathrm{Fe}^{3+}+\mathrm{SCN}-\mathrm{FeSCN}^{2+}$

MAR

Examples of Chemical Equilibria

Formation of stalactites

 and stalagmites:$\mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}($ liq $)+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons$
$\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{HCO}_{3}-(\mathrm{aq})$

Phase changes:
$\mathbf{H}_{\mathbf{2}} \mathbf{O}(\mathrm{s}) \rightleftharpoons \mathrm{H}_{\mathbf{2}} \mathbf{O}(\mathrm{liq})$

The Equilibrium Constant

For any type of chemical equilibrium of the type

$$
a A+b B \rightleftharpoons c C+d D
$$

the following is a CONSTANT (at a given T)

If K is known, we can predict concentrations of products or reactants.

The Equilibrium Constant: Example

Equilibrium constants, K, come from kinetic rate constants, k
Example: For $\mathbf{2} \mathbf{N O}_{2(\mathrm{~g})} \rightleftharpoons \mathbf{N}_{\mathbf{2}} \mathbf{O}_{4(\mathrm{~g})}$,

$$
\begin{aligned}
& \operatorname{rate}_{\mathrm{f}}=\mathrm{k}_{[}\left[\mathrm{NO}_{2}\right]^{2} \\
& \text { rate }_{\mathrm{r}}=\mathrm{k}_{\mathrm{f}}\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]
\end{aligned}
$$

When rates equal, rate ${ }_{f}=$ rate $_{r}$, and

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{f}}\left[\mathrm{NO}_{2}\right]^{2}=\mathrm{k}_{\mathrm{r}}\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right] \\
& {\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]\left[\mathrm{NO}_{2}\right]^{2}=\mathrm{k}_{\mathrm{f}} / \mathrm{k}_{\mathrm{r}}=\mathrm{K} \text { (equilibrium) }}
\end{aligned}
$$

The Equilibrium Constant: Example

The Equilibrium Constant: Example

Determining K

$2 \mathrm{NOCl}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
Place 2.00 mol of NOCI is a 1.00 L flask. At equilibrium you find $0.66 \mathrm{~mol} / \mathrm{L}$ of NO . Calculate K.
Solution

Set of a table of concentrations (ICE)			
	$[\mathrm{NOCl}]$	[NO]	$\left[\mathrm{Cl}_{2}\right]$
Initial	2.00	0	0
Change			
Equilibrium		0.66	

Determining K

$2 \mathrm{NOCl}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
Place 2.00 mol of NOCl is a 1.00 L flask. At equilibrium you find $0.66 \mathrm{~mol} / \mathrm{L}$ of NO . Calculate K.

Solution

Set of a table of concentrations (ICE)

	$[\mathrm{NOCl}]$	$[\mathrm{NO}]$	$\left[\mathrm{Cl}_{2}\right]$
Initial	2.00	0	0
Change	-0.66	+0.66	+0.33
Equilibrium	1.34	0.66	0.33

Writing and Manipulating K
Expressions

Solids and liquids NEVER appear in equilibrium expressions.
$\mathbf{s}(\mathbf{s})+\mathbf{o}_{\mathbf{2}}(\mathbf{g}) \rightleftharpoons \mathbf{s o}_{2}(\mathbf{g})$

$$
K=\frac{\left[\mathrm{SO}_{2}\right]}{\left[\mathrm{O}_{2}\right]}
$$

Writing and Manipulating K Expressions

Adding equations for reactions

$$
\begin{aligned}
& \mathbf{S}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g}) \quad \mathrm{K}_{1}=\left[\mathrm{SO}_{2}\right] /\left[\mathrm{O}_{2}\right] \\
& \mathrm{SO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \\
& \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g}) \\
& \mathrm{K}_{2}=\left[\mathrm{SO}_{3}\right] /\left[\mathrm{SO}_{2}\right]\left[\mathrm{O}_{2}\right]^{1 / 2}
\end{aligned}
$$

NET EQUATION

$$
\mathbf{s}(\mathbf{s})+3 / 2 \mathrm{o}_{2}(\mathbf{g}) \rightleftharpoons \mathbf{s o}_{3}(\mathbf{g})
$$

$$
\mathrm{K}_{\mathrm{net}}=\frac{\left[\mathrm{SO}_{3}\right]}{\left[\mathrm{O}_{2}\right]^{3 / 2}}=\mathrm{K}_{1} \cdot \mathrm{~K}_{2}
$$

Writing and Manipulating K

Expressions

$$
\begin{aligned}
& \text { Changing coefficients } \\
& \begin{aligned}
& \mathbf{S (s)}+\mathbf{3 / 2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathbf{S O}_{3}(\mathrm{~g}) \quad \mathrm{K}_{\text {old }}=\frac{\left[\mathrm{SO}_{3}\right]}{\left[\mathrm{O}_{2}\right]^{3 / 2}} \\
& \mathbf{2 S (s)}+\mathbf{3} \mathbf{O}_{\mathbf{2}}(\mathbf{g}) \rightleftharpoons 2 \mathbf{S O}_{3}(\mathrm{~g}) \\
& \mathrm{K}_{\text {new }}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{O}_{2}\right]^{3}} \\
& \mathrm{~K}_{\text {new }}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{O}_{2}\right]^{3}}=\left(\mathrm{K}_{\text {old }}\right)^{2}
\end{aligned}
\end{aligned}
$$

Writing and Manipulating K

 Expressions$$
\begin{aligned}
& \text { Changing direction } \\
& \begin{array}{l}
\mathbf{S}(\mathbf{s})+\mathbf{O}_{2}(\mathbf{g}) \rightleftharpoons \mathbf{S O}_{2}(\mathbf{g})
\end{array} \quad K=\frac{\left[\mathrm{SO}_{2}\right]}{\left[\mathrm{O}_{2}\right]} \\
& \mathbf{S O}_{2}(\mathbf{g}) \rightleftharpoons \mathbf{S}(\mathbf{s})+\mathbf{O}_{\mathbf{2}}(\mathbf{g}) \\
& \\
& K_{\text {new }}=\frac{\left[\mathrm{O}_{2}\right]}{\left[\mathrm{SO}_{2}\right]}
\end{aligned}
$$

$$
\text { and: } \quad K_{\text {new }}=\frac{\left[\mathrm{O}_{2}\right]}{\left[\mathrm{SO}_{2}\right]}=\frac{1}{\mathrm{~K}_{\text {old }}}
$$

The Meaning of K

Can tell if a reaction is product-favored or reactant-favored.
For: $\mathbf{N}_{2}(\mathrm{~g})+\mathbf{3} \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$

$$
K_{c}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}=3.5 \times 10^{8}
$$

Conc. of products is much greater
than that of reactants at equilibrium.
The reaction is strongly product=
favored.
Converting $\mathbf{K}_{\mathbf{c}}$ Into $\mathbf{K}_{\mathbf{p}}$

$$
K_{p}=K_{c}(R T)^{\Delta n}
$$

T = Temperature (K)
$R=0.082057 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
$\Delta \mathrm{n}=$ change in moles of gas
Example:
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
$\Delta \mathrm{n}=2$ - 4 = -2
see: Types of Equilibrium Constants

Kp Expressions

We have been writing K in terms of M ($\mathrm{mol} / \mathrm{L}$), designated by K_{C}
Equilibrium constants expressed in terms of gases designated K_{p} where all pressures in atm ($760 \mathrm{~mm} \mathrm{Hg}=1 \mathrm{~atm}$)
For: $\mathbf{N}_{\mathbf{2}}(\mathbf{g})+\mathbf{3} \mathbf{H}_{\mathbf{2}}(\mathrm{g}) \rightleftharpoons \mathbf{2} \mathbf{N H}_{\mathbf{3}}(\mathrm{g})$

$$
\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}} \quad \mathrm{~K}_{\mathrm{p}}=\frac{\mathrm{P}_{N H_{3}}^{2}}{\mathrm{P}_{N_{2}} \mathrm{P}_{H_{2}}^{3}}
$$

MAR

MAR

The Meaning of K

For: $\mathrm{AgCl}(\mathrm{s}) \rightleftharpoons \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}-(\mathrm{aq})$
$K_{\mathrm{c}}=\left[\mathrm{Ag}^{+}\right][\mathrm{Cl}]=1.8 \times 10^{-5}$
Conc. of products is much less than that of reactants at equilibrium.
The reaction is strongly reactant-favored.

Product- or Reactant Favored

Product-favored K > 1

Reactant-favored K < 1

The Reaction Quotient, Q

The Reaction Quotient, Q
We can use Q to tell if a reaction is at equilibrium. If not at equilibrium, we can
predict which way the reaction will move to approach equilibrium.

$$
K=\frac{[\text { iso }]}{[\mathrm{n}]}=2.50
$$

H

The Reaction Quotient, Q

All reacting chemical systems can be characterized by their REACTION QUOTIENT, Q.
For: $\mathbf{a} \mathbf{A}+\mathbf{b} \mathbf{B} \rightleftharpoons \mathbf{c} \mathbf{C}+\mathbf{d} \mathbf{D}$
Under Any Reaction Conditions

$$
\text { Reaction quotient }=Q=\frac{\begin{array}{l}
\text { Product concentrations } \\
{[\mathrm{C}]^{c}[\mathrm{D}]^{d}}
\end{array}}{[\mathrm{~A}]^{a}[\mathrm{~B}]^{b}}
$$

If $\mathbf{Q}=\mathrm{K}$, then system is at equilibrium.
If $Q \neq K$, then system is not at equilibrium

The Reaction Quotient, Q

Comparing Q and K :

$Q<K$, reaction shifts to the products (right)
$Q>K$, reaction shifts to the reactants (left) $Q=K$, reaction is at equilibrium

Typical Calculations

$\mathbf{H}_{\mathbf{2}}(\mathrm{g})+\mathrm{I}_{\mathbf{2}}(\mathrm{g}) \rightleftharpoons \mathbf{2} \mathrm{HI}(\mathrm{g})$

$$
K_{c}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}=55.3
$$

Place 1.00 mol each of H_{2} and I_{2} in a 1.00 L flask. Calc. equilibrium concentrations.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g}), \mathrm{K}_{\mathrm{c}}=55.3
$$

Step 2. Put equilibrium concentrations into K_{c} expression.

$$
K_{c}=\frac{[2 \mathrm{x}]^{2}}{[1.00-\mathrm{x}][1.00-\mathrm{x}]}=55.3
$$

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g}), \mathrm{K}_{\mathrm{c}}=55.3
$$

Step 3. Solve K_{c} expression - take square root of both sides.

$$
\begin{aligned}
& 7.44=\frac{2 x}{1.00-x} \\
& 7.44(1.00-x)=2 x \\
& 7.44-7.44 x=2 x \\
& x=7.44 / 9.44=0.788
\end{aligned}
$$

Therefore, at equilibrium

$$
\left[\mathrm{H}_{2}\right]=\left[\mathrm{I}_{2}\right]=1.00-\mathrm{x}=0.21 \mathrm{M}
$$

$$
[\mathrm{HI}]=2 x=1.58 \mathrm{M}
$$

Nitrogen Dioxide Equilibrium

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

$K_{c}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}=0.0059$ at 298 K
If initial concentration of $\mathrm{N}_{2} \mathrm{O}_{4}$ is 0.50 M , what are the equilibrium concentrations?
Step 1. Set up an equilibrium table

$\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$	$\left[\mathrm{NO}_{2}\right]$
0.50	0
-x	+2 x
$0.50-\mathrm{x}$	2 x

Nitrogen Dioxide Equilibrium

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

Solve the quadratic equation for x.
$a x^{2}+b x+c=0$

$$
\begin{gathered}
\begin{array}{c}
\mathbf{a}=4 \quad \mathbf{b}=0.0059 \quad \mathbf{c}=-0.0029 \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
x=\frac{-0.0059 \pm \sqrt{(0.0059)^{2}-4(4)(-0.0029)}}{2(4)} \\
x=-0.00074 \pm 1 / 8(0.046)^{1 / 2}=-0.00074 \pm 0.027
\end{array}
\end{gathered}
$$

Le Chatelier's Principle

Temperature, changes in volume, changes in pressure and changes in concentration affect equilibria.
The outcome is governed by LE CHATELIER'S PRINCIPLE
"...if a system at equilibrium is disturbed, the system tends to shift its equilibrium position to counter the effect of the disturbance."
MAR

> Nitrogen Dioxide Equilibrium $$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

Step 2. Substitute into K_{c} expression and solve.

$$
\begin{array}{cc}
K_{c}=0.0059=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}=\frac{(2 \mathrm{x})^{2}}{(0.50-\mathrm{x})} \\
\text { Rearrange: } \quad \begin{array}{l}
0.0059(0.50-\mathrm{x})=4 \mathrm{x}^{2} \\
\\
\\
\\
0.0029-0.0059 \mathrm{x}=4 \mathrm{x}^{2} \\
4 \mathrm{x}^{2}+\mathbf{0 . 0 0 5 9 x}-\mathbf{0 . 0 0 2 9}=\mathbf{0}
\end{array}
\end{array}
$$

This is a QUADRATIC EQUATION

```
ax}\mp@subsup{}{}{2}+bx + c=
```

$a=4 \quad b=0.0059 \quad c=-0.0029$

CH 223: report both values of x when
MAR performing quadratic calculations

$$
\begin{aligned}
& \quad \begin{array}{c}
\text { Nitrogen Dioxide Equilibrium } \\
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
\end{array} \\
& x=\frac{-0.0059 \pm \sqrt{(0.0059)^{2}-4(4)(-0.0029)}}{2(4)} \\
& \mathrm{x}=-\mathbf{- 0 . 0 0 0 7 4 \pm 1 / 8 (0 . 0 4 6) ^ { 1 / 2 } = - 0 . 0 0 0 7 4 \pm 0 . 0 2 7} \\
& \mathrm{x}=0.026 \text { or }-0.028 \\
& \text { But a negative value is not reasonable. }
\end{aligned}
$$

Conclusion: $\mathrm{x}=0.026$
$\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=0.50-\mathrm{x}=0.47 \mathrm{M}$

$$
\left[\mathrm{NO}_{2}\right]=2 \mathrm{x}=0.052 \mathrm{M}
$$

CH 223: report both values of x when
Consider the fizz in a soft drink

$$
\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{liq}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{aq})+\text { heat }
$$

Decrease T. What happens to equilibrium position? To value of K ?
$\mathrm{K}=\left[\mathrm{CO}_{2}\right] / \mathrm{P}\left(\mathrm{CO}_{2}\right)$
K increases as T goes down because
$\left[\mathrm{CO}_{2}\right]$ increases and $\mathrm{P}\left(\mathrm{CO}_{2}\right)$ decreases.
Increase T. Now what?
Equilibrium shifts left and K decreases. see: Le Chatelier's Guide MAR

Temperature Effects on Equilibrium		
$\begin{aligned} & \mathrm{N}_{2} \mathrm{O}_{4} \text { (colorless) } \\ & 2 \mathrm{NO}_{2} \text { (brown) } \end{aligned}$		
$\Delta \mathrm{H}^{\circ}=+57.2 \mathrm{~kJ}$ (endothermic)	0	
$K_{c}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}$	\%	\%
$\mathrm{K}_{\mathrm{c}}=0.00077$ at 273 K	${ }_{80}{ }^{80}$	
$\mathrm{K}_{\mathrm{c}}=0.0059$ at 298 K	ε	$\stackrel{8}{8}$
K changes with temperature		

Volume \& Pressure Effects on

 Equilibrium$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})+$ heat $\rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
colorless gas brown gas endothermic

Volume and Pressure changes affect equilibrium
Larger volume / Less Pressure = more molecules
Smaller volume / Higher Pressure = fewer molecules

MAR

Adding a "reactant" to a chemical system.

$$
\begin{aligned}
& \text { Haber-Frisch reaction: adding } \mathrm{N}_{2} \text { or } \mathrm{H}_{2}, \\
& \text { reaction moves to right } \quad \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
\end{aligned}
$$

MAR
EQUILIBRIUM AND EXTERNAL EFFECTS
Concentration changes ---> no change in K - only the position of equilibrium changes.
We can use the "water U-tube" to demonstrate this phenomena (and connect to Haber-Frisch)

Haber-Frisch reaction:

$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$

Water U-tube

Removing a "reactant" from a chemical system.
Haber-Frisch reaction: removing N_{2} or H_{2}, reaction moves to left

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

MAR

Le Chatelier's Principle

Adding a "product" to a chemical system.
Haber-Frisch reaction: adding NH_{3}, reaction moves to left

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

Butane \rightleftharpoons Isobutane

Assume you are at equilibrium with [iso] $=1.25 \mathrm{M}$ and [butane] $=0.50 \mathrm{M}$. Now add 1.50 M butane. When the system comes to equilibrium again, what are [iso] and [butane]? $\mathrm{K}=2.50$

Solution

Calculate \mathbf{Q} immediately after adding more butane and compare with K.

$$
\mathrm{Q}=\frac{[\text { isobutane }]}{[\text { butane }]}=\frac{1.25}{0.50+1.50}=0.625
$$

Q is LESS THAN K. Therefore, the reaction will shift to the \qquad -.

Butane-

 Isobutane Equilibrium$$
K=\frac{[\text { isobutane }]}{[\text { butane }]}=2.50
$$

isobutane

Butane \rightleftharpoons Isobutane

You are at equilibrium with [iso] $=1.25 \mathrm{M}$ and [butane] $=0.50 \mathrm{M}$. Now add 1.50 M butane . Solution
Q is less than K, so equilibrium shifts right away from butane and toward isobutane.
Set up concentration (ICE) table
[butane]
[isobutane]
Initial
Change
Equilibrium

Le Chatelier's Principle

Removing a "product" from a chemical system.
Haber-Frisch reaction: removing NH_{3},
reaction moves to right $\quad \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$

Butane \rightleftharpoons Isobutane

Assume you are at equilibrium with [iso] = 1.25 M and [butane] $=0.50 \mathrm{M}$. Now add 1.50 M butane. When the system comes to equilibrium again, what are [iso] and [butane]? $K=2.50$

$$
\text { Butane } \rightleftharpoons \text { Isobutane }
$$

You are at equilibrium with [iso] $=1.25 \mathrm{M}$ and [butane] = 0.50 M . Now add 1.50 M butane. Solution

$$
K=2.50=\frac{[\text { isobutane }]}{[\text { butane }]}=\frac{1.25+\mathrm{x}}{2.00-\mathrm{x}}
$$

$\mathrm{x}=1.07 \mathrm{M}$
At the new equilibrium position,
[butane] $=0.93 \mathrm{M}$ and [isobutane] $=2.32 \mathrm{M}$
Equilibrium has shifted toward isobutane.

End of Chapter 13

See:

- Chapter Thirteen Study Guide
- Chapter Thirteen Concept Guide
- Types of Equilibrium Constants
- Important Equations (following this slide)
- End of Chapter Problems (following this slide)

Important Equations, Constants, and Handouts from this Chapter:

$$
K_{p}=K_{c}(R T)^{\triangle n}
$$

$\mathbf{R}=0.082057 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$

$$
\text { for: } a \mathbf{A}+b \mathbf{B} \rightleftharpoons c \mathbf{c}+\mathrm{d} D
$$

$$
\begin{aligned}
& \qquad \begin{array}{l}
{[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}}} \\
{[\mathrm{~A}]^{\mathrm{a}}[\mathrm{~B}]^{\mathbf{b}}}
\end{array} \text { conc. of products } \\
& \text { equilibrium constant conc. of reactants } \\
& \text { Under Any Reaction Conditions } \\
& \text { Product concentrations } \\
& \text { Reaction quotient }=\begin{array}{l}
\text { Q }=\frac{[\mathrm{C}]^{c}[\mathrm{D}]^{d}}{[\mathrm{~A}]^{a}[\mathrm{~B}]^{b}} \\
\text { Reactant concentrations }
\end{array}
\end{aligned}
$$

- Manipulating Equilibrium Constant Expressions
- Types of Equilibrium Constants

Le Chatelier's Principle

End of Chapter Problems: Test Yourself

1. Write an equilibrium constant expression for the following reaction: $\mathrm{C}(\mathrm{s})+$ $\mathrm{CO}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{CO}(\mathrm{g})$
2. $\mathrm{K}=5.6 \times 10^{-12}$ at 500 K for the dissociation of iodine molecules to iodine atoms: $\mathrm{I}_{\mathbf{2}}(\mathrm{g}) \rightleftarrows \mathbf{2} \mathrm{I}(\mathrm{g})$ A mixture has $\left[\mathrm{l}_{2}\right]=0.020 \mathrm{~mol} / \mathrm{L}$ and $[\mathrm{l}]=2.0 \times 10^{-8} \mathrm{~mol} /$ L . Is the reaction at equilibrium (at 500 K)? If not, which way must the reaction proceed to reach equilibrium?
3. The reaction: $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftarrows \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ was examined at $250^{\circ} \mathrm{C}$. At equilibrium, $\left[\mathrm{PCl}_{5}\right]=4.2 \times 10^{-5} \mathrm{~mol} / \mathrm{L},\left[\mathrm{PCl}_{3}\right]=1.3 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$, and $\left[\mathrm{Cl}_{2}\right]=3.9$ $\times 10^{-3} \mathrm{~mol} / \mathrm{L}$. Calculate K for the reaction.
4. The equilibrium constant for the dissociation of iodine molecules to iodine atoms: $\mathrm{I}_{\mathbf{2}}(\mathrm{g}) \rightleftarrows \mathbf{2} \mathbf{I}(\mathrm{g})$ is 3.76×10^{-3} at 1000 K . Suppose 0.105 mol of I_{2} is placed in a 12.3 L flask at 1000 K . What are the concentrations of I_{2} and I when the system comes to equilibrium?
5. Dinitrogen trioxide decomposes to NO and NO_{2} in an endothermic process $(\Delta \mathrm{H}=40.5 \mathrm{~kJ} / \mathrm{mol}): \mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{~g}) \rightleftarrows \mathrm{NO}(\mathrm{g})+\mathrm{NO}_{2}(\mathrm{~g})$ Predict the effect of the following changes on the position of the equilibrium (left, right, or no change): a. adding more $\mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{~g})$
b. adding more $\mathrm{NO}_{2}(\mathrm{~g})$, increasing the volume of the
c. increasing the volume of the reaction flask
d. lowering the temperature

End of Chapter Problems: Answers

1. $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{CO}^{2} /\left[\mathrm{CO}_{2}\right]\right.$ or $\mathrm{K}_{\mathrm{p}}=\mathrm{Pco}^{2} / \mathrm{Pco2}$
2. $\mathrm{No}, \mathrm{Q}<\mathrm{K}$, reaction will proceed to the right (more products)
3. $\mathrm{K}=1.2$
4. $\left[\mathrm{I}_{2}\right]=0.00614 \mathrm{M},[\mathrm{I}]=0.00480 \mathrm{M}$
5. a. right b. left c. right d. left
