Chemistry 223

Key Equations for CH 223

This may not include all the important equations from CH 223, but most of them are included here, separated by chapter.

Good luck!

Important Equations, Constants, and Handouts from Chapter 13:
for: $\mathbf{a} \mathbf{A}+\mathbf{b} \mathbf{B} \rightleftharpoons \mathbf{c} \mathbf{C}+\mathbf{d} \mathbf{D}$

$$
K_{p}=K_{c}(R T)^{\Delta n}
$$

$R=0.082057 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$

Under Any Reaction Conditions
$\begin{aligned} & \text { Reaction quotient }= Q=\frac{[\mathrm{C}]^{c}[\mathrm{D}]^{d}}{[\mathrm{~A}]^{a}[\mathrm{~B}]^{b}} \\ & \text { Reactant concentrations }\end{aligned}$
Handouts

- Manipulating Equilibrium Constant Expressions
- Types of Equilibrium Constants

MAR
Le Chatelier's Principle

Important Equations, Constants, and Handouts from Chapter 16:

$$
\begin{aligned}
& \Delta \mathbf{H}_{\text {sys }}{ }^{\circ}=\Sigma \Delta \mathbf{H}^{\circ} \text { (products) }-\Sigma \Delta \mathbf{H}^{\circ} \text { (reactants) } \\
& \Delta \mathbf{S}_{\text {sys }}{ }^{\circ}=\Sigma \mathbf{S}^{\circ} \text { (products) }-\Sigma \mathbf{S}^{\circ} \text { (reactants) } \\
& \Delta \mathbf{G}_{\text {sys }}{ }^{\circ}=\Sigma \Delta \mathbf{G}^{\circ} \text { (products) }-\Sigma \Delta \mathbf{G}^{\circ} \text { (reactants) } \\
& \Delta \mathbf{G}^{\circ}=\Delta \mathbf{H}^{\circ}-\mathbf{T} \Delta \mathbf{S}^{\circ} \\
& \Delta \mathbf{G}^{\circ}{ }_{\mathrm{rxn}}=-\mathbf{R T} \ln \mathbf{K} \\
& R=8.3145 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
& \Delta \mathbf{G}_{\mathrm{rxn}}=\Delta \mathbf{G}^{\circ}{ }_{\mathrm{rxn}}+\mathbf{R T} \ln \mathbf{Q} \\
& \text { Handouts: } \\
& \text { - Types of Equilibrium Constants } \\
& \text { - Thermodynamic Values (Problem Set \#5) }
\end{aligned}
$$

Important Equations, Constants, and Handouts from Chapter 14 Part II:

Titrations (SA+SB, SB+SA,
WA+SB, WB+SA) and Buffers chapter

$$
\mathbf{p H}=\mathbf{p K}_{\mathbf{a}}+\log \frac{[\text { Conj. base }]}{[\text { Acid }]}
$$

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left(\mathrm{mol}_{\text {Conj base }}-\mathrm{mol}_{\text {strong acid }}\right)}{\left(\mathrm{mol}_{\text {weak acid }}+\mathrm{mol}_{\text {strong acid }}\right)}
$$

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left(\mathrm{mol}_{\text {Conj base }}+\mathrm{mol}_{\text {strong base }}\right)}{\left(\mathrm{mol}_{\text {weak acid }}-\mathrm{mol}_{\text {strong base }}\right)}
$$

Handouts:

- Manipulating Equilibrium Constant Expressions
- Types of Equilibrium Constants
- Table of K_{a} and K_{b} values in Problem Set \#2
- Titration Guide

MAR

- Buffers and Henderson-Hasselbalch Guide

- know the three laws of thermodynamics!
- know the difference between enthalpy and entropy and how they relate to Gibbs free energy
- know how to calculate enthalpy (CH 221) entropy and Gibbs energy (this chapter)
- know how the sign of $\Delta \mathbf{G}$ relates to spontaneity (and also $\Delta \mathbf{S}_{\text {universe }}$)

Handouts

- Types of Equilibrium Constants
- Solubility Guide
know how to predict solubility using CH 221 solubility guide

Solubility: Common ion effect, separating salts by differences in solubility

Important Equations, Constants, and Handouts from Chapter 15:

$$
\begin{aligned}
& \mathrm{Ag}^{+}(\mathrm{aq})+2 \mathrm{CN}^{-1}(\mathrm{aq}) \rightleftharpoons \mathrm{Ag}(\mathrm{CN})_{2^{-1}}(\mathrm{aq}) \\
& \mathrm{K}_{\mathrm{f}}=\frac{\left[\mathrm{Ag}(\mathrm{CN})_{2}^{-1}\right]}{\left[\mathrm{Ag}^{+}\right]\left[\mathrm{CN}^{-1}\right]^{2}}=5.6^{*} 10^{18}
\end{aligned}
$$

Important Equations, Constants, and Handouts
from Chapter 17:

Redox Reactions: oxidation, reduction, LEO, GER, oxidizing agent, reducing agent, anode, cathode, galvanic/voltaic cells, electrolysis (electrolytic cells), shorthand notation for galvanic cells, SHE electrode

- know how to balance redox reactions in acid or base conditions
- be able to calculate E° and E for cells

$$
\begin{gathered}
\Delta \mathbf{G}^{\circ}=-\mathbf{n ~ F ~ E ~} \mathbf{E}^{\circ} \\
\text { Amps }=\frac{\text { coulombs }}{\text { seconds }} \\
\mathbf{E}=\mathrm{E}^{\circ}-(\mathbf{R T} / \mathrm{nF}) \ln \mathbf{Q} \\
R=8.3145 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
\mathrm{~F}=9.6485 \times 10^{4} \mathrm{C} / \mathrm{mol} \mathrm{e}^{-} \\
\mathrm{E}^{\circ}=\frac{\mathrm{RT}}{\mathrm{nF}} \ln \mathrm{~K}
\end{gathered}
$$

Handouts:

- Thermodynamic Values and Electrochemical
Cell Values (Problem Set \#5)

