CH 223 Spring 2025: **"Titration of Weak Acids** (online)**" Lab –** Instructions

Note: This is the lab for section W1 of CH 223 only.

• If you are taking section 01 or section H1 of CH 223, please use this link: http://mhchem.org/q/6a.htm

Step One:

Watch the lab video for the "Weak Acids" lab, found here:

http://mhchem.org/v/h.htm

Record the data found at the *end* of the lab video on page Ib-6-3.

Step Two:

Complete pages Ib-6-3 through Ib-6-4 using the "Weak Acids" video. Include your name on page Ib-6-3!

Step Three:

Submit your lab (pages Ib-6-3 through Ib-6-4 *only* to avoid a point penalty) as a *single* PDF file to the instructor via email (mike.russell@mhcc.edu) on Wednesday, May 7 by 11:59 PM. I recommend a free program (ex: CamScanner, https://camscanner.com) or a website (ex: CombinePDF, https://combinepdf.com) to convert your work to a PDF file.

If you have any questions regarding this assignment, please email (mike.russell@mhcc.edu) the instructor! Good luck on this assignment!

This page left blank for printing purposes

Titration of Weak Acids

Name:

Complete the following questions. All work must be shown to receive full credit.

1. Obtain from the video

2.

Collect the following data from the "Titration of a Weak Acid" video (http://mhchem.org/v/h.htm)

[NaOH] (M):	[NaOH] (M):	
Sample #1	Sample #2	
Unknown sample (g):	Unknown sample (g):	
Equivalence volume (mL):	Equivalence volume (mL):	
Half-equivalence volume (mL):	Half-equivalence volume (mL):	
Equivalence pH:	Equivalence pH:	
Half-equivalence pH:	Half-equivalence pH:	
Lab Calculations: show all calculations on separate paper; include with your lab report		
mol unknown acid at equivalence:	mol unknown acid at equivalence:	
molar mass unknown (g/mol):	molar mass unknown (g/mol):	
K _a unknown acid:	K _a unknown acid:	
Average K _a :	Parts per thousand (K _a):	
Average molar mass (g/mol):	Parts per thousand (molar mass):	

3. Postlab question: (Show all work after the problem)

0.4998 g an unknown acid was placed in 75.00 mL of water. The unknown acid required 16.44 mL of 0.2001 M NaOH to reach equivalence. The pH at half equivalence was 3.86

Ka: _____ Molar mass of unknown (g/mol): _____

Volume NaOH to reach Half-equivalence (mL):

Concentration of Unknown acid in original solution (M): _____