CH 223 Spring 2024:
 "Titration of Weak Acids
 (online)" Lab-Instructions

Note: This is the lab for section W1 of CH 223 only.

- If you are taking section 01 or section H1 of CH 223, please use this link: http://mhchem.org/q/6a.htm

Step One:
Watch the lab video for the "Weak Acids" lab, found here:
http://mhchem.org/v/h.htm
Record the data found at the end of the lab video on page Ib-6-3.

Step Two:
Complete pages Ib-6-3 through Ib-6-4 using the "Weak Acids" video. Include your name on page Ib-6-3!

Step Three:
Submit your lab (pages Ib-6-3 through Ib-6-4 only to avoid a point penalty) as a single PDF file to the instructor via email (mike.russell@mhcc.edu) on Wednesday, May 8 by 11:59 PM. I recommend a free program (ex: CamScanner, https://camscanner.com) or a website (ex: CombinePDF, https://combinepdf.com) to convert your work to a PDF file.

If you have any questions regarding this assignment, please email (mike.russell@mhcc.edu) the instructor! Good luck on this assignment!

This page left blank for printing purposes

Complete the following questions. All work must be shown to receive full credit.

1. Obtain from the video

Collect the following data from the "Titration of a Weak Acid" video (http://mhchem.org/v/h.htm)

[NaOH] (M):
 \qquad

Sample \#1

[NaOH] (M): \qquad

Unknown sample (g): \qquad Unknown sample (g): \qquad

Equivalence volume (mL): \qquad Equivalence volume (mL): \qquad

Sample \#2

$$
2
$$

Half-equivalence volume (mL): \qquad Half-equivalence volume (mL): \qquad

Equivalence pH: \qquad Equivalence pH : \qquad

Half-equivalence pH : \qquad Half-equivalence pH : \qquad
2. Lab Calculations: show all calculations on separate paper; include with your lab report
mol unknown acid at equivalence: \qquad mol unknown acid at equivalence: \qquad
molar mass unknown (g/mol): \qquad molar mass unknown (g/mol): \qquad
K_{a} unknown acid: \qquad K_{a} unknown acid: \qquad

Average K_{a} : \qquad Parts per thousand $\left(\mathrm{K}_{\mathrm{a}}\right)$: \qquad

Average molar mass (g/mol): \qquad Parts per thousand (molar mass): \qquad
3. Postlab question: (Show all work after the problem)
0.4998 g an unknown acid was placed in 75.00 mL of water.

The unknown acid required 16.44 mL of 0.2001 M NaOH to reach equivalence.
The pH at half equivalence was 3.86
\qquad Molar mass of unknown ($\mathbf{g} / \mathrm{mol}$): \qquad

Volume NaOH to reach Half-equivalence (mL): \qquad

Concentration of Unknown acid in original solution (M): \qquad

