Sample Quiz #2	Name:	Lab Section:

Be sure to show all work, use the correct number of significant figures, circle final answers and use correct units in all problems.

1. For the reaction: $CH_4(g) + 2 O_2(g) \rightleftharpoons CO_2(g) + 2 H_2O(g)$, $K_c = 1.15*10^7$ (430. K), held within a 2.00 L flask (10 points)

Write the equilibrium constant expression for K_c.

Is the reaction at equilibrium if $[CO_2] = [H_2O] = 0.00350 \text{ M}$, $[O_2] = 3.31*10^{-6} \text{ M}$ and $[CH_4] = 3.31*10^{-6} \text{ M}$? If not, indicate the direction that the reaction must proceed to achieve equilibrium.

What is the value of the equilibrium constant if the reaction is $2 \text{ CH}_4(g) + 4 \text{ O}_2(g) \rightleftharpoons 2 \text{ CO}_2(g) + 4 \text{ H}_2\text{O}(g)$ at 430. K?

What is the value of K_c at 430. K for the reaction: $CO_2(g) + 2 H_2O(g) \iff CH_4(g) + 2 O_2(g)$

2. For the reaction: $Cl_2(g) + Br_2(g) \rightleftharpoons 2 BrCl(g)$, $K_c = 10.3 (150 °C) (4 points)$

Is this reaction product-favored or reactant-favored?

If 0.500 mol BrCl in a 1.00 L flask is allowed to reach equilibrium, what are the equilibrium concentrations of Cl₂, Br₂ and BrCl?

3. For the reaction: $RX(s) \rightleftharpoons R(g) + X(g), K_c = 1.11*10^{-7} (200. \text{ K})$ (6 points)

Write the equilibrium constant expression.

Calculate the equilibrium concentrations of R and X if a solid sample of RX is placed in a closed vessel and decomposes until equilibrium is established.

What is the value of K_p at 200. K?

Answers

Be sure to show all work, use the correct number of significant figures, circle final answers and use correct units in all problems.

1. For the reaction: $CH_4(g) + 2 O_2(g) \rightleftharpoons CO_2(g) + 2 H_2O(g)$, $K_c = 1.15*10^7 (430. \text{ K})$, held within a 2.00 L flask (10 points)

Write the equilibrium constant expression for K_c . $K_c = [H_2O]^2[CO_2]/[CH_4][O_2]^2 = 1.15 \times 10^7$

Is the reaction at equilibrium if $[CO_2] = [H_2O] = 0.00350 \text{ M}$, $[O_2] = 3.31*10^{-6} \text{ M}$ and $[CH_4] = 3.31*10^{-6} \text{ M}$? If not, indicate the direction that the reaction must proceed to achieve equilibrium.

 $Q = 1.18 \times 10^9$

Q > K, will shift left (to reactant side)

What is the value of the equilibrium constant if the reaction is $2 \text{ CH}_4(g) + 4 \text{ O}_2(g) \rightleftharpoons 2 \text{ CO}_2(g) + 4 \text{ H}_2\text{O}(g)$ at 430. K?

$$K_{\text{new}} = 1.32 \times 10^{14}$$

What is the value of K_c at 430. K for the reaction: $CO_2(g) + 2 H_2O(g) \rightleftharpoons CH_4(g) + 2 O_2(g)$

$$K_{new} = 8.70 \times 10^{-8}$$

2. For the reaction: $Cl_2(g) + Br_2(g) \rightleftharpoons 2 BrCl(g)$, $K_c = 10.3 (150 °C) (4 points)$

Is this reaction product-favored or reactant-favored? product favored ($K_c > 1$)

If 0.500 mol BrCl in a 1.00 L flask is allowed to reach equilibrium, what are the equilibrium concentrations of Cl₂, Br₂ and BrCl?

$$[Cl_2] = [Br_2] = 0.0960 \text{ M}$$

 $[BrCl] = 0.308 \text{ M}$

3. For the reaction: $RX(s) \rightleftharpoons R(g) + X(g)$, $K_c = 1.11*10^{-7}$ (200. K) (6 points)

Write the equilibrium constant expression. $K_c = |R||X| = 1.11 \times 10^{-7}$

Calculate the equilibrium concentrations of R and X if a solid sample of RX is placed in a closed vessel and decomposes until equilibrium is established.

$$[R] = [X] = 3.33 \times 10^{-4} M$$

What is the value of $\mathbf{K}_{\mathbf{p}}$ at 200. K?

$$K_p = 2.99 \times 10^{-5}$$