CII	222

Sample Q	Quiz #1	Name:	Lab Section:
----------	---------	-------	--------------

Be sure to show all work, use the correct number of significant figures, circle final answers and use correct units in all problems.

1. Comment on the probable **sign** of the thermodynamic property for the following scenarios. **Circle** positive, negative or zero in each case. (6 points)

	Sign of Thermodynamic Property	B
Thermodynamic Property	(circle one)	Description:
ΔН	positive / negative / zero	My reaction 'feels cold' after the chemicals react
ΔG	positive / negative / zero	A solid dissolves when placed in water
ΔS	positive / negative / zero	Liquid gasoline burns as you drive to MHCC
ΔН	positive / negative / zero	A camp fire started while camping in the woods
ΔG	positive / negative / zero	The acidic properties of a weak acid in water
ΔS	positive / negative / zero	You help your sister organize a messy bedroom

2. This reaction was studied at 25.0 °C: $P_4O_{10}(s) + 6 H_2O(l) \rightarrow 4 H_3PO_4(l)$ Use the data acquired to **calculate values for** ΔH°_{rxn} , ΔS°_{rxn} and finally ΔG°_{rxn} . (10 points)

Species	$\Delta H_f^{\circ}(\mathrm{kJ/mol})$	$S^{\circ}(J/K \cdot mol)$	
P ₄ O ₁₀ (s)	-2984.0	228.9	
$H_2O(1)$	-285.8	69.95	
H ₃ PO ₄ (1)	-1279.0	110.5	

3. Answer the following questions using the following: (4 points)

NaCl(g), He(g), third, second, first, always, never, positive, negative, zero

- a Which of the above has a $\Delta H_{\rm f}^{\circ} = 0$?
- b The ______ law of thermodynamics states that $\Delta S_{universe}$ must be greater than zero for all spontaneous processes.
- c If ΔH° < 0 and ΔS° > 0, then ΔG° will ______ be spontaneous.
- d A perfectly formed elemental crystal at 0 K will have a S° which is _____.

Sample Quiz #1 Name: _____ Lab Section: _____

Answers

Be sure to show all work, use the correct number of significant figures, circle final answers and use correct units in all problems.

1. Comment on the probable **sign** of the thermodynamic property for the following scenarios. **Circle** positive, negative or zero in each case. (6 points)

positive negative positive negative negative

2. This reaction was studied at 25.0 °C: $P_4O_{10}(s) + 6 H_2O(l) \rightarrow 4 H_3PO_4(l)$

Use the data acquired to calculate values for ΔH°_{rxn} , ΔS°_{rxn} and finally ΔG°_{rxn} . (10 points)

Species	$\Delta H_f^{\circ}(\mathrm{kJ/mol})$	$S^{\circ}(J/K \cdot mol)$
P ₄ O ₁₀ (s)	-2984.0	228.9
$H_2O(1)$	-285.8	69.95
H ₃ PO ₄ (1)	-1279.0	110.5

 $\Delta H_{rxn} = -417.2 \text{ kJ/mol}$

 $\Delta S_{rxn} = -206.6 \text{ J/mol}$

 $\Delta G_{rxn} = -355.6 \text{ kJ/mol}$

3. Answer the following questions using the following: (4 points)

He(g)

second

always

zero