Chemistry 223 Exam II Cover Sheet

Spring XXXX

Name:	
This exam consists of twenty-five (25) multiple-choice questions of extra credit.	tions and four (4) short answer questions with five
A periodic table and scratch paper are available for you to us	e on this exam.
Before you start:	
an immediate grade of zero.	
Integrity statement:	
I have neither given nor received aid on this exam.	
	Your signature

1. Will a solid form when 0.1 M lead(II) nitrate is added to 0.3 M hydrochloric acid?

	a. b. c. d. e.	yes no sometimes only on Fridays more information is needed to answer this question
Let	ter a	nswer to question #1:
2.	Wh	ich of the following is the solubility product constant for Fe ₂ S ₃ ?
	b. c. d.	$\begin{split} K_{sp} &= [Fe^{2+}][S^{3-}] \\ K_{sp} &= [Fe^{2+}]^2[S^{3-}]^3 \\ K_{sp} &= [Fe^{2+}][S^{2-}]^3 \\ K_{sp} &= [Fe^{3+}][S^{2-}]^3 \\ K_{sp} &= [Fe^{3+}]^2[S^{2-}]^3 \end{split}$
Let	ter a	nswer to question #2:
3.	Wh	ich of the following equations is the solubility product for magnesium iodate, Mg(IO ₃) ₂ ?
	b. c. d.	$K_{\rm sp} = [{\rm Mg^{2+}}][{\rm I^{-1}}]^2[{\rm O^{-2}}]^6$ $K_{\rm sp} = [{\rm Mg^{2+}}][{\rm I^{-1}}]^2[{\rm 3O^{-2}}]^2$ $K_{\rm sp} = [{\rm Mg^{2+}}][{\rm IO_{3^{-1}}}]$ $K_{\rm sp} = [{\rm Mg^{2+}}]^2[{\rm IO_{3^{-1}}}]$ $K_{\rm sp} = [{\rm Mg^{2+}}][{\rm IO_{3^{-1}}}]^2$
Let	ter a	nswer to question #3:
4.	The	e solubility of SrSO ₄ in water is 0.107 g in 1.0 L at 25 °C. What is the value of K_{sp} for SrSO ₄ ?
	c. d.	3.4×10^{-7} 5.8×10^{-4} 1.2×10^{-3} 1.1×10^{-2} 2.1×10^{-1}
Let	ter a	nswer to question #4:
5.	The	e solubility of lead (II) chloride, PbCl ₂ , is 1.6×10^{-2} M. What is the K_{sp} of PbCl ₂ ?
	e.	5.0 x 10-4 4.1 x 10-6 3.1 x 10-7 1.6 x 10-5 1.6 x 10-2
Let	ter a	nswer to question #5:

5.		culate the maximum concentration (in M) of silver ions (Ag ⁺) in a solution that contains 0.025 M of CO ₃ ² The K_{sp} of Ag ₂ CO ₃ .1 x 10 ⁻¹² .
	b. c. d.	1.8 x 10 ⁻⁵ 1.4 x 10 ⁻⁶ 2.8 x 10 ⁻⁶ 3.2 x 10 ⁻¹⁰ 8.1 x 10 ⁻¹²
Let	ter a	nswer to question #6:
7.	The	$e K_{sp}$ for $Zn(OH)_2$ is 5.0 x 10-17. Determine the molar solubility of $Zn(OH)_2$ in a buffer solution with a pH of 11.5.
	b. c. d.	5.0 x 10 ⁶ 1.2 x 10 ⁻¹² 1.6 x 10 ⁻¹⁴ 5.0 x 10 ⁻¹² 5.0 x 10 ⁻¹⁷
Lei	ter a	nswer to question #7:
8.	The	e molar solubility of is not affected by the pH of the solution.
	b. c. d.	Na ₃ PO ₄ NaF KNO ₃ AlCl ₃ MnS
Let	ter a	nswer to question #8:
9.		rasider the reaction $Zn(OH)_2(s) + 2 OH(aq) \rightleftharpoons Zn(OH)_4^2(aq) \qquad K = 8.7 \times 10^{-2}$ $K_{sp} \text{ for } Zn(OH)_2 \text{ is } 3.0 \times 10^{-17}, \text{ what is the value of the formation constant, } K_{form}, \text{ for the reaction below?}$ $Zn^{2+}(aq) + 4 OH(aq) \rightleftharpoons Zn(OH)_4^2(aq)$
	c.	2.6 x 10 ⁻¹⁸ 3.4 x 10 ⁻¹⁶ 2.9 x 10 ¹⁵ 3.3 x 10 ¹⁶ 3.8 x 10 ¹⁷
Let	ter a	nswer to question #9:

10. The following anions can be separated by precipitation as silver salts: Cl-1, Br-1, I-1, CrO₄2-. If Ag⁺ is added to a solution containing the four anions, each at a concentration of 0.10 M, in what order will they precipitate? Compound AgCl 1.8×10^{-10} Ag₂CrO₄ 1.1×10^{-12} 5.4×10^{-13} AgBr 8.5×10^{-17} AgI a. $AgCl \rightarrow Ag_2CrO_4 \rightarrow AgBr \rightarrow AgI$ b. $AgI \rightarrow AgBr \rightarrow Ag2CrO_4 \rightarrow AgCl$ c. $Ag_2CrO_4 \rightarrow AgCl \rightarrow AgBr \rightarrow AgI$ $d. \quad Ag_2CrO_4 \rightarrow AgI \rightarrow AgBr \rightarrow AgCl$ e. $AgI \rightarrow AgBr \rightarrow AgCl \rightarrow Ag_2CrO_4$ Letter answer to question #10: 11. is reduced in the following reaction: $Cr_2O_7^{2-} + 6S_2O_3^{2-} + 14H^+ \rightarrow 2Cr^{3+} + 3S_4O_6^{2-} + 7H_2O_7^{2-}$ a. Cr6+ b. S²⁺ c. H+1 d. O²e. $S_4O_6^{2-}$ Letter answer to question #11: 12. Which substance is the reducing agent in the following reaction: $Cr_2O_7^{2-} + 3Ni + 14H^+ \rightarrow 2Cr^{3+} + 3Ni^{2+} + 7H_2O_7^{2-}$ a. Ni b. H⁺¹ $c. \quad Cr_2O_{7^{2\text{-}}}$ d. H₂O e. Ni²⁺ Letter answer to question #12: 13. The balanced half-reaction in which one mole of chlorine gas is reduced to the aqueous chloride ion is a ______ process. a. one-electron b. two-electron c. four-electron

d. three-electrone. six-electron

Letter answer to question #13:

14.	The half-reaction occurring at the <i>anode</i> in the balanced reaction shown below is $3 \text{ MnO}_4^{1-}(aq) + 5 \text{ Fe}(s) + 24 \text{ H}^+(aq) \rightarrow 3 \text{ Mn}^{2+}(aq) + 5 \text{ Fe}^{3+}(aq) + 12 \text{ H}_2O(l)$
	a. $MnO_4^{1-}(aq) + 8 H^+(aq) + 5 e^{1-} \rightarrow Mn^{2+}(aq) + 4 H_2O(1)$ b. $2 MnO_4^{1-}(aq) + 12 H^+(aq) + 6 e^{1-} \rightarrow 2 Mn^{2+}(aq) + 3 H_2O(1)$ c. $Fe(s) \rightarrow Fe^{3+}(aq) + 3 e^{1-}$ d. $Fe(s) \rightarrow Fe^{2+}(aq) + 2 e^{1-}$ e. $Fe^{2+}(aq) \rightarrow Fe^{3+}(aq) + e^{1-}$
Lett	ter answer to question #14:
15.	The standard cell potential (E° _{cell}) of the reaction below is $+0.126$ V. The value of ΔG ° for the reaction iskJ/mol. Pb(s) + 2 H ⁺ (aq) \rightarrow Pb ²⁺ (aq) + H ₂ (g) a24.3 b. +24.3 c12.6 d. +12.6 e50.8
Lett	ter answer to question #15:
16.	How many grams of Ca metal are produced by the electrolysis of molten CaBr ₂ using a current of 30.0 amp for 10.0 hours? a. 22.4 b. 448
T	c. 0.0622 d. 224 e. 112
Lett	ter answer to question #16:
17.	Which one of the following reactions is a redox reaction?
	 a. NaOH(aq) + HCl(aq) → NaCl(aq) + H₂O(l) b. Pb²⁺(aq) + 2 Cl¹⁻(aq) → PbCl₂(aq) c. AgNO₃(aq) + HCl(aq) → HNO₃(aq) + AgCl(s) d. None of the above is a redox reaction. e. All of the above are redox reactions
Lett	ter answer to question #17:
18.	What is the coefficient for Fe ³⁺ when the following equation is balanced ? $CN^{1-} + Fe^{3+} \rightarrow CNO^{1-} + Fe^{2+}$, $pH = 10.75$
	a. 1 b. 2 c. 3 d. 4 e. 5
Lett	ter answer to question #18:

10 77	
19. In	e standard cell potential (E°cell) of the reaction below is -0.126 V. When this reaction is set up as an electrochemical cell,
	$Pb^{2+}(aq) + H_2(g) \rightarrow Pb(s) + 2 H^+(aq)$
a.	the reaction occurs until the chemicals are used up
b.	the reaction does not occur under any circumstances
c.	the reaction does not occur unless external voltage is applied which is less than 0.126 V
d.	the reaction does not occur unless external voltage is applied which is more than 0.126 V
e.	more than one answer is correct

Letter answer to question #19:

20. For the reaction given below: how will adding iron(III) nitrate affect the value of E°cell?

$$3 \text{ MnO}_{4}^{1}$$
-(aq) + 5 Fe(s) + 24 H^{+} (aq) $\rightarrow 3 \text{ Mn}^{2}$ +(aq) + 5 Fe^{3} +(aq) + $12 \text{ H}_{2}\text{O(l)}$

- a. adding iron(III) nitrate will not affect the value of E°cell
- b. The value of E°_{cell} will increase
- c. The value of E°_{cell} will decrease
- d. E°_{cell} will not change, but enthalpy will be affected
- e. E°cell will not change, but entropy will be affected

Letter answer to question #20:

21. What is the correct cell notation for a voltaic cell based on the reaction below?

$$Cu^{2+}(aq) + Fe(s) \rightarrow Cu(s) + Fe^{2+}(aq)$$

- a. $Cu(s) | Cu^{2+}(aq) | | Fe^{2+}(aq) | Fe(s)$
- b. Fe(s) \parallel Fe²⁺(aq), Cu²⁺(aq) \mid Cu(s)
- c. $Cu(s) \parallel Cu^{2+}(aq), Fe^{2+}(aq) \parallel Fe(s)$
- d. $Cu(s) \mid Fe^{2+}(aq) \parallel Cu^{2+}(aq) \mid Fe(s)$
- e. $Fe(s) | Fe^{2+}(aq) || Cu^{2+}(aq) | Cu(s)$

Letter answer to question #21:

22. Use the standard reduction potentials below to determine which element or ion is the best oxidizing agent.

$$O_2(g) + 4 H^+(aq) + 4 e^- \rightarrow 2 H_2O(1)$$

$$E^{\circ} = +1.229 \text{ V}$$

$$Hg_2^{2+}(aq) + 2 e^- \rightarrow 2 Hg(1)$$

$$E^{\circ} = +0.789 \text{ V}$$

$$I_2(s) + 2 e^- \rightarrow 2 I^-(aq)$$

$$E^{\circ} = +0.535 \text{ V}$$

- a. I₂(s)
- b. O₂(g)
- c. I-(aq)
- d. $Hg_2^{2+}(aq)$
- e. $H_2O(1)$

Letter answer to question #22:

23. Consider the following half-reactions:

$$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$$

$$E^{\circ} = +0.80 \text{ V}$$

$$Cu^{2+}(aq) + 2 e^{-} \rightarrow Cu(s)$$

$$E^{\circ} = +0.34 \text{ V}$$

$$Pb^{2+}(aq) + 2 e^{-} \rightarrow Pb(s)$$

$$E^{\circ} = -0.13 \text{ V}$$

$$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$$

$$E^{\circ} = -0.44 \text{ V}$$

$$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$$

$$E^{\circ} = -1.66 \text{ V}$$

Which of the above metals or metal ions will oxidize Pb(s)?

- a. $Ag^+(aq)$ and $Cu^{2+}(aq)$
- b. Ag(s) and Cu(s)
- c. $Fe^{2+}(aq)$ and $Al^{3+}(aq)$
- d. Fe(s) and Al(s)
- e. $Cu^{2+}(aq)$ and $Fe^{2+}(aq)$

Letter answer to question #23:

- 24. What is the reducing agent in the following electrochemical cell: Mg(s) | Mg²⁺(aq) || Ni²⁺(aq) | Ni(s)
 - a. Mg
 - b. Mg²⁺
 - c. Ni²⁺
 - d. Ni
 - e. H₂O

Letter answer to question #24:

- 25. What charge, in coulombs, is required to deposit 1.5 g Mg(s) from a solution of Mg²⁺(aq)?
 - a. 4.1×10^2 C
 - b. $6.0 \times 10^3 \text{ C}$
 - c. $1.2 \times 10^4 \text{ C}$
 - d. $2.9 \times 10^5 \text{ C}$
 - e. $3.1 \times 10^6 \text{ C}$

Letter answer to question #25:

Part II: Short Answer / Calculation, 40 points total. Show all work!

- 1. You have a solution containing $0.010 \text{ M Hg}_2^{2+}(aq)$. $K_{sp} = 1.1*10^{-18} = [\text{Hg}_2^{2+}][\text{Cl-}]^2$ (10 points)
 - a. Write the chemical reaction corresponding to the K_{sp} for Hg_2Cl_2 showing all states of matter, reactants and products.
 - b. What is the concentration of chloride required to begin precipitation of Hg₂Cl₂?
 - c. If 0.010 M chloride is added to the solution, what is the value of Hg_2^{2+} at this point?
 - d. Would adding NaNO₃ affect the solubility of Hg₂Cl₂? Explain briefly.

2. Calculate ΔG° and the equilibrium constant, K_{eq} , for the disproportionation reaction (below) of Cu⁺¹ at 25 °C:

 $2 Cu^{+1}(aq) \rightarrow Cu^{2+}(aq) + Cu(s)$

given the following thermodynamic information. (10 points)

 $Cu^+(aq) + e^- \rightarrow Cu(s)$

 $E^{\circ} = +0.518 \text{ V}$

 $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$

 $E^{\circ} = +0.337 \text{ V}$

3.	You	a decide to assemble an electrochemical cell based on the half reactions Mg^{2+} / $Mg_{(s)}$ and Ni^{2+} / $Ni_{(s)}$. (10 points)
	a.	Write the equation for the product favored reaction that occurs in the cell.
	b.	Calculate E° for this product-favored reaction at 25 °C. <i>Use the table at the end of the exam.</i>
	c.	What is the better reducing agent, Mg or Ni?
	d.	Calculate E_{cell} for this reaction at 25 °C when $[Ni^{2+}] = 0.10$ M and $[Mg^{2+}] = 0.90$ M. (Hint: be sure to use the Nernst vation, $E = E^{\circ} - (RT/nF) \ln Q$)
	e.	Do electrons flow from the Mg electrode to the Ni electrode or from Ni to Mg??
4.	a.	Write your name on the front page of the exam in the designated area (5 points)
	b.	What is the name of the lion who says "GER" in the redox chapter? (5 points)
	c.	(circle one) Which would, in general, make a better reducing agent: metals nonmetals metalloids (5 points)

CH 223 Exam II Point Distribution Sheet

Avoid a point penalty - do **not** write on this page!

Multiple choice questions:				
numbe r of multiple choice questions correct	X 4 points per question	=	_ points	
Short answer questions:			_ points	
Total points on this exam:			_ points	

Grade	Percentage	Points on This Exam	
A	90% - 100%	126 - 140	
В	80% - 89%	112 - 125	
С	70% - 79%	98 - 111	
D	60% - 69%	84 - 97	
F	0% - 59%	0 - 83	

Part I: Multiple Choice Questions

- 1. A
- 2. E
- 3. E
- 4. A
- 5. D
- 6. A
- 7. D
- 8. C
- 9. C
- 10. E
- 11. A
- 12. A
- 13. B
- 14. C
- 15. A
- 16. D
- 17. D
- 18. B
- 19. D
- 20. C
- 21. E
- 22. B
- 23. A
- 24. A
- 25. C

Part II: Short Answer / Calculation.

- 1. Mercury question:
 - a. $Hg_2Cl_2(s) \rightleftharpoons Hg_2^{2+}(aq) + 2 Cl-(aq)$
 - b. 1.0 x 10-8 M
 - c. 1.1*10-14 M
 - d. no
- 2. $\Delta G = -34.9 \text{ kJK}, K = 1.3 \text{ x } 10^6$
- 3. Electrochemical cell question:
 - a. $Mg + Ni^{2+} \rightarrow Mg^{2+} + Ni$
 - b. 2.12 V
 - c. Mg
 - d. 2.09 V
 - e. from Mg to Ni
- 4. Questions

 - a. :) b. LEO
 - c. metals