Chemistry 223 Exam I Cover Sheet Spring XXXX | Name: | |--| | This exam consists of twenty-five (25) multiple-choice questions and four (4) short answer questions with five points of extra credit. | | A periodic table and scratch paper are available for you to use on this exam. | | Before you start: | | Write your first and last name in the space above Sign the integrity statement below. Failing to sign the integrity statement on this exam impart an immediate grade of zero. For multiple choice questions: clearly enter your letter answer in the appropriate location. Circle the letter which corresponds to your answer. For short answer questions: clearly circle your final answer, showing all work. Point values and your exam score will be summarized on the final page. | | Integrity statement: | | I have neither given nor received aid on this exam. | | | | Your signature | | 1. | A s | tatement of the second law of thermodynamics is that | |-----|-------|---| | | a. | spontaneous reactions are always exothermic. | | | b. | energy is conserved in a chemical reaction. | | | c. | the Gibbs free energy is a function of both enthalpy and entropy. | | | d. | $\Delta S = -\Delta H$ for any chemical reaction. | | | e. | in a spontaneous process, the entropy of the universe increases. | | | С. | in a spontaneous process, the entropy of the universe increases. | | Let | ter a | nswer to question #1: | | 2. | As | defined by Ludwig Boltzmann, the third law of thermodynamics states that | | | a. | in a spontaneous process, the entropy of the universe increases. | | | b. | there is no disorder in a perfect crystal at 0 K. | | | c. | the total entropy of the universe is always increasing. | | | d. | the total energy of the universe is constant. | | | e. | mass and energy are conserved in all chemical reactions. | | Let | ter a | nswer to question #2: | | 3. | Wh | nich of the following processes involves a decrease in entropy? | | | a. | the decomposition of NH ₃ (g) into H ₂ (g) and N ₂ (g) gas | | | b. | the dissolution of NaCl in water | | | c. | the condensation of steam to liquid water | | | d. | the evaporation of ethanol | | | e. | the sublimation of dry ice (i.e., CO ₂ (s)) | | Let | ter a | nswer to question #3: | | 4. | Cal | culate the standard entropy change for the following reaction, | | | giv | 2 HgO(s) \rightleftharpoons 2 Hg(l) + O ₂ (g)
en S°[HgO] = 70.3 J/K·mol, S°[Hg(l)] =76.0 J/K·mol, and S°[O ₂ (g)] = 205.1 J/K·mol. | | | a. | -216.5 J/K | | | b. | +210.8 J/K | | | c. | +216.5 J/K | | | d. | +351.4 J/K | | | e. | +497.7 J/K | | Let | ter a | nswer to question #4: | | 5. | Pre | dict the signs of ΔH , ΔS , and ΔG for the evaporation of water 25 °C. | | | а | $\Delta H > 0$ $\Delta S < 0$ $\Delta G < 0$ | ``` a. \Delta H > 0, \Delta S < 0, \Delta G < 0 b. \Delta H > 0, \Delta S > 0, \Delta G > 0 ``` c. $$\Delta H < 0, \Delta S > 0, \Delta G < 0$$ c. $$\Delta H < 0, \Delta S > 0, \Delta G < 0$$ d. $$\Delta H < 0, \Delta S > 0, \Delta G > 0$$ e. $$\Delta H < 0, \Delta S < 0, \Delta G < 0$$ Letter answer to question #5: 6. The dissolution of ammonium nitrate occurs spontaneously in water at 25 °C. As NH_4NO_3 dissolves, the temperature of the water decreases. What are the signs of ΔH , ΔS , and ΔG for this process? a. $$\Delta H > 0, \Delta S < 0, \Delta G > 0$$ b. $$\Delta H > 0, \Delta S > 0, \Delta G > 0$$ c. $$\Delta H > 0, \Delta S > 0, \Delta G < 0$$ d. $$\Delta H < 0, \Delta S < 0, \Delta G < 0$$ e. $$\Delta H < 0, \Delta S > 0, \Delta G > 0$$ Letter answer to question #6: 7. At what temperatures will a reaction be spontaneous if $\Delta H = -76.0 \text{ kJ}$ and $\Delta S = +231 \text{ J/K}$? - a. All temperatures below 329 K - b. Temperatures between 0 K and 231 K - c. All temperatures above 329 K - d. The reaction will be spontaneous at any temperature. - e. The reaction will never be spontaneous. Letter answer to question #7: 8. Calculate ΔG°_{rxn} for the reaction below at 25.0 °C $$\begin{array}{c} CO(g) \ + \ H_2O(l) \ \to \ H_2(g) \ + \ CO_2(g) \\ given \ \Delta G^{\circ}_f[CO(g)] = -137.2 \ kJ/mol, \ \Delta G^{\circ}_f[H_2O(l)] = -237.2 \ kJ/mol \ and \ \Delta G^{\circ}_f[CO_2(g)] = -394.4 \ kJ/mol. \end{array}$$ - a. -768.8 kJ - b. -294.4 kJ - c. -20.0 kJ - d. +20.0 kJ - e. +768.8 kJ Letter answer to question #8: 9. Write the expression for K for the reaction: $Al_2S_3(s) \rightleftharpoons 2 Al^{3+}(aq) + 3 S^{2-}(aq)$ a. $$K = [Al^{3+}]^2 [S^{2-}]^3$$ b. $$K = [A1^{3+}][S^{2-}]$$ $$K = [2 \text{ Al}^{3+}][3 \text{ S}^{2-}]$$ $$K = \frac{[Al_2S_3]}{[Al^{3+}]^2[S^{2-}]^3}$$ $$K = \frac{[Al^{3+}]^2[S^{2-}]^3}{[Al_2S_3]}$$ Letter answer to question #9: 10. Write the expression for K_p for the reaction: $2 \text{ HBr}(g) \iff H_2(g) + \text{Br}_2(l)$ $$K_{\rm p} = \frac{P_{\rm HBr}^2}{P_{\rm Br_2} P_{\rm H_2}}$$ a. $$K_{\rm p} = \frac{P_{\rm H_2}}{P_{\rm HBr}^2}$$ $$K_{\rm p} = P_{\rm HBr}^2$$ $$K_{\rm p} = \frac{P_{\rm HBr}^2}{P_{\rm H_2}}$$ d $$K_{\rm p} = \frac{P_{\rm H_2} P_{\rm Br_2}}{P_{\rm HBr}^2}$$ Letter answer to question #10: 11. A 4.00 L flask is filled with 0.75 mol SO₃, 2.50 mol SO₂, and 1.30 mol O₂, and allowed to reach equilibrium. Predict the effect on the concentrations of SO₃ as equilibrium is achieved by using Q, the reaction quotient. Assume the temperature of the mixture is chosen so that $K_c = 12$. $2 \text{ SO}_3(g) \iff 2 \text{ SO}_2(g) + \text{O}_2(g)$ - a. $[SO_3]$ will decrease because Q > K. - b. $[SO_3]$ will decrease because Q < K. - c. $[SO_3]$ will increase because Q < K. - d. $[SO_3]$ will increase because Q > K. - e. $[SO_3]$ will remain the same because Q = K. Letter answer to question #11: 12. This reaction below is studied at a high temperature. $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ At equilibrium, the partial pressures of the gases are as follows: $PCl_5 = 1.8 \times 10^{-2}$ atm, $PCl_3 = 5.6 \times 10^{-2}$ atm, and $Cl_2 = 3.8 \times 10^{-4}$ atm. What is the value of K_p for the reaction? - a. 3.8×10^{-7} - b. 1.2×10^{-3} - c. 3.1 - d. 8.5×10^2 - e. 2.6×10^6 Letter answer to question #12: 13. A sealed tube is prepared with 1.07 atm PCl₅ at 500 K. The PCl₅ decomposes until equilibrium is established; 1.54 atm is the equilibrium pressure of the tube. Calculate K_p using the equation: $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ - a. 0.052 - b. 0.20 - c. 0.27 - d. 0.37 - e. 2.2 Letter answer to question #13: | 14. | Hydrogen monoiodide can decompose into hydrogen and iodine gases: $2 \text{ HI}(g) \iff H_2(g) + I_2(g) I_$ | |------|---| | | a. $HI = 0.576$ atm, $H_2 = 0.096$ atm, $I_2 = 0.096$ atm
b. $HI = 0.654$ atm, $H_2 = 0.083$ atm, $I_2 = 0.083$ atm
c. $HI = 0.728$ atm, $H_2 = 0.092$ atm, $I_2 = 0.092$ atm
d. $HI = 0.737$ atm, $H_2 = 0.083$ atm, $I_2 = 0.083$ atm
e. $HI = 0.768$ atm, $H_2 = 0.111$ atm, $H_2 = 0.111$ atm | | Lett | ter answer to question #14: | | 15. | Using the chemical reactions below, determine the equilibrium constant for the following reaction: $Ca^{2+}(aq) + 2 H_2O(l) \rightleftharpoons Ca(OH)_2(s) + 2 H^+(aq)$ | | | $Ca(OH)_2(s) \iff Ca^{2+}(aq) + 2 OH \cdot (aq)$ $K = 6.5 \times 10^{-6}$
$H_2O(1) \iff H^+(aq) + OH \cdot (aq)$ $K = 1.0 \times 10^{-14}$ | | | a. 1.5×10^{-23}
b. 6.5×10^{-20}
c. 1.3×10^{-19}
d. 1.5×10^{-9}
e. 1.5×10^{19} | | Lett | ter answer to question #15: | | 16. | Hydrogen and iodine react to form hydrogen monoiodide according to: $H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$ $K_c = 0.504$ at 25 °C. If initial concentrations of 0.170 M H_2 and 0.170 M I_2 are allowed to equilibrate, what is the equilibrium concentration of HI? a. 0.0445 M b. 0.0891 M c. 0.0684 M d. 0.0706 M e. 0.0129 M | | Lett | ter answer to question #16: | | 17. | Which of the following is never a Brønsted-Lowry acid in an aqueous solution? | | | a. hydrogen monochloride, HCl(g) b. dihydrogen monosulfide, H₂S(g) c. ammonium chloride, NH₄Cl(s) d. hydrogen monofluoride, HF(g) e. sodium perchlorate, NaClO₄(s) | | Lett | ter answer to question #17: | | | At 25 °C, what is the H ₃ O ⁺ concentration in 0.044 M NaOH(aq)? a. 4.4 × 10 ⁻¹⁶ M b. 2.3 × 10 ⁻¹³ M c. 4.4 × 10 ⁻⁷ M d. 1.36 M e. 12.6 M ter answer to question #18: | | LUUL | to this work to question π 10. | | 19. | Assuming equal initial concentrations of the given species, which of the following weak acids has the strongest conjugate base in an aqueous solution? | |-----|--| | | a. acetic acid, $K_a = 1.8 \times 10^{-5}$
b. formic acid, $K_a = 1.8 \times 10^{-4}$
c. hydrogen sulfite ion, $K_a = 6.2 \times 10^{-8}$
d. nitrous acid, $K_a = 4.5 \times 10^{-4}$
e. phosphoric acid, $K_a = 7.5 \times 10^{-3}$ | | Let | ter answer to question #19: | | 20. | What is the pH of 5.0×10^{-3} M HF? The K_a for hydrofluoric acid is 7.2×10^{-4} . Hint: is $100*K_a < C_a$? | | | a. 2.72 b. 2.80 c. 4.60 d. 5.44 e. 6.12 | | Let | ter answer to question #20: | | 21. | A solution is made by diluting 0.50 mol NaClO to a volume of 3.0 L with water. What is the pH of the solution? (K_b of $ClO^{-1} = 2.9 \times 10^{-7}$) | | | a. 3.66
b. 7.46
c. 10.34
d. 10.58
e. 13.22 | | Let | ter answer to question #21: | | 22. | What is the effect of adding 10 mL of 0.1 M NaOH(aq) to 100 mL of 0.2 M NH ₄ +(aq)? | | | The pH will decrease. The concentration of NH₃ will increase. The concentration of NH₄+ will decrease. | | | a. 1 only b. 2 only c. 3 only d. 2 and 3 e. 1, 2, and 3 | | Let | ter answer to question #22: | | 23. | What is the pH of an aqueous solution of 0.30 M HF and 0.15 M F-? (K_a of HF = 7.2 × 10-4) | | | a. 1.83 b. 2.84 c. 3.14 d. 3.44 e. 10.86 | | Let | ter answer to question #23: | | a
b
c
d | HNO₂ and NO₂-¹, K_a = 4.5 × 10-4 CH₃CO₂H and CH₃COO-¹, K_a = 1.8 × 10-5 H₂PO₄-¹ and HPO₄-², K_{a2} = 6.2 × 10-8 | | |-----------------------|---|---| | Lette | answer to question #24: | | | 25. 1 | The K_a of hypochlorous acid, HClO, is 3.5×10^{-8} . What [ClO-]/ | [HClO] ratio is necessary to make a buffer with a pH of 7.71? | | a
b
c
d
e | . 0.25
. 0.56
. 1.8 | | | Lette | answer to question #25: | d NO ₂ -1, $K_a = 4.5 \times 10^{-4}$ H and CH ₃ COO-1, $K_a = 1.8 \times 10^{-5}$ and HPO ₄ ²⁻ , $K_{a2} = 6.2 \times 10^{-8}$ NH ₃ , $K_a = 5.7 \times 10^{-10}$ mestion #24: ochlorous acid, HClO, is 3.5×10^{-8} . What [ClO-]/[HClO] ratio is necessary to make a buffer with a pH of 7.71? destion #25: swer / Calculation, 40 points total. Show all work! | | Part | II: Short Answer / Calculation, 40 points total. Show all work | ! | | 1. (| Consider a 1.00 L solution which is 0.700 M CH ₃ CO ₂ H and 0.6 | 00 M NaCH ₃ CO ₂ . $K_a = 1.8*10^{-5}$ (10 points) | | | a. What is the pH of the initial solution? | | | | b. Calculate the pH upon adding 10.00 mL of 1.00 M HCl | to the solution from part a. | | | c. Calculate the pH upon adding 15.00 mL of 2.10 M NaO | H to the solution from part a. | | | hanges on this reaction at equilibrium. Write RIGHT, LEFT | or NO CHANGE to indicate the effect observed. (10 points) | | | Addition of B_2H_6 : | | | | Addition of a catalyst: | | | | Increasing the pressure: | | | | Removal of BH ₃ : | | | | Increasing temperature: | | | | Page VIII-7-7 / CH 2 | 223 Sample Exam I | 24. Which of the following combinations would be best to buffer an aqueous solution at a pH of 2.0? 3. Calculate ΔG° for the reaction below at 25.0 °C. (10 points) $P_4(s) \ + \ 6\ H_2O(l) \ \to \ 4\ H_3PO_4(l)$ | Species | $\Delta \mathrm{H}^{\circ}_{f}(\mathrm{kJ/mol})$ | $S^{\circ}_{f}(J/K \cdot mol)$ | |--------------------|--|--------------------------------| | P ₄ (s) | 0 | 22.80 | | $H_2O(1)$ | -285.8 | 69.95 | | $H_3PO_4(1)$ | -1279.0 | 110.5 | - 4. a. Problem: write your name on the front of this exam (5 points) - b. List the five strong acids. (5 points) - c. List the three strong bases (5 points) ## **CH 223 Exam I Point Distribution Sheet** Avoid a point penalty - do **not** write on this page! | Multiple choice questions: | | | | | |---|-------------------------------|---|--------|--| | number of multiple choic
questions correct | X 4 points per question
ce | = | points | | | Short answer questions: | | | points | | | Total points on this exam: | | | points | | | Grade | Percentage | Points on This Exam | | |-------|------------|---------------------|--| | A | 90% - 100% | 126 - 140 | | | В | 80% - 89% | 112 - 125 | | | С | 70% - 79% | 98 - 111 | | | D | 60% - 69% | 84 - 97 | | | F | 0% - 59% | 0 - 83 | | ## **<u>Part I:</u>** Multiple Choice Questions - 1. E - 2. B - 3. C - 4. C - 5. B - 6. C - 7. D - 8. C - 9. A - 10. B - 11. B - 12. B - 13. D - 14. B - 15. A - 16. B - 17. E - 18. B - 19. C - 20. B - 21. C - 22. D 23. B - 24. A 25. D ## Part II: Short Answer / Calculation. - 1. Buffer question: - a. 4.67b. 4.66 - c. 4.72 - 2. Le Chatelier's Principle question: - a. right - b. no change - c. left - d. right - e. right - 3. -3401 kJ - 4. Questions - a. :) b. HCl, HBr, HI, HNO₃, HClO₄ - c. NaOH, KOH, LiOH