CH 223 Exam Prep II Worksheet	Name:
Worksheet due dates: Mon, 5/18, 1:10 PM answer for each problem. Failure to use the	I (L1), Wed, 5/20 1:10 PM (L2). To complete, show detailed steps on how to get the given his form for work and answers will result in a point penalty.
Problem 1: How many grams of Fe(OH) ₂	$(K_{sp} = 1.8 * 10^{-15})$ will dissolve in one liter of water buffered at pH = 12.00?
Answer to Problem #1: 1.6 * 10 -9 g	

<u>Problem 2</u>: A solution of AgNO₃ is added dropwise to a solution that is 0.10 M Cl⁻¹ and 0.10 M Br⁻¹. Neglecting volume changes, which salt precipitates first, AgCl ($K_{sp} = 1.8*10^{-10}$) or AgBr ($K_{sp} = 3.3*10^{-13}$)? What is the concentration (M) of the anion that precipitates first when the second anion begins to precipitate?

<u>Problem 3</u> : Using the <i>unbalanced</i> reaction buffered at $pH = 4.41$ show below, determine the number of electrons transferred during the reaction. (Show the balanced reaction for credit!)
ClO ₃ -1(aq) + I-1(aq) \rightarrow I ₂ (g) + Cl ₂ (g)
Answer to Problem #3: Ten electrons are transferred.
Problem 4: Determine ΔG° for a cell that utilizes the following reaction:
Cl ₂ (g) + 2 Br-1(aq) \rightarrow 2 Cl-1(aq) + Br ₂ (1)
The standard reduction for the chlorine is 1.360 V and the standard reduction for the bromine liquid is 1.077 V.
Answer to Problem #4: -54.6 kJ
<u>Problem 5</u> : If an electrolysis plant operates its electrolytic cells at a total current of 1.0×10^6 amp, how long will it take to produce one metric ton (one million grams) of Mg(s) from seawater containing Mg ²⁺ ?