MAR

14.1 - Brønsted-Lowry Acids and Bases

The most general theory for common aqueous acids and bases is the Brønsted - Lowry theory

- * A Brønsted-Lowry Acid: A compound that donates a proton to another compound
- * A Brønsted-Lowry Base: A compound that accepts a proton from another compound

The Brønsted definition means NH₃ is a base in water - and water is an acid

NH_3	+	H ₂ O	\longrightarrow NH ₄ ⁺	+	OH.
Base		Acid	Acid		Base

Conjugates of Acids and Bases

NH3 is a base in water - and water is itself an acid

$$NH_3(aq) + H_2O(\ell) \longrightarrow NH_4^+(aq) + OH^-(aq)$$
Base

NH₃ / NH₄+ is a conjugate pair - related by the gain or loss of H+ (H₂O and OH- are another conjugate pair)

Every acid has a conjugate base - and vice-versa.

Water as an Acid and a Base

H₂O can function as both an acid and a base!

MAR

Water and Autoionization

MAR

$$H - 0$$
 $H - 0$

Water can be an acid or a base due to autoionization

Pure water undergoes autoionization into hydronium (acid) and hydroxide (base) ions. so $K_w = [H_3O^+]^2 = [OH^-]^2$ The equilibrium constant, K_w , has been measured for 2 $H_2O(I) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$

 $K_w = [H_3O^+][OH^-] = 1.000 \times 10^{-14} \text{ at } 25 \text{ }^{\circ}\text{C}$ MAR

In a neutral solution, $[H_3O^+] = [OH^-]$ and so $[H_3O^+] = [OH^-] = \sqrt{K_w} =$ 1.000 x 10⁻⁷ M

Memorize $K_W = 1.000 \times 10^{-14}!$

Acid Ionization

The reaction between a Brønsted-Lowry Acid and water is called acid ionization

Strong acids dissociate 100% into hydronium and a conjugate base:

 $HNO_3(aq) + H_2O(liq) \rightarrow$

 $H_3O^+(aq) + NO_3^-(aq)$

HNO₃ is about 100% dissociated in water; there is no HNO₃ present, only H₃O+.

Use single sided arrows for strong acids! MAR

Weak acids do not dissociate completely into hydronium and a conjugate base; equilibrium!

 $HNO_2(aq) + H_2O(liq) =$ $H_3O+(aq) + NO_2-(aq)$

Equilibrium constants for weak acids called acid ionization constants, Ka:

$$K_a = \frac{[H^+][NO_2^-]}{[HNO_2]}$$

Base Ionization

The reaction between a Brønsted-Lowry Base and water is called base ionization

Strong bases dissociate 100% into hydroxide and a conjugate acid:

NaOH(aq) + H₂O(liq) → OH(aq) + Na(aq)

NaOH is about 100% dissociated in water; there is no NaOH present, only OH-.

Use single sided arrows for strong bases!

Weak bases do not dissociate completely into hydroxide and a conjugate acid; equilibrium!

$NH_3(aq) + H_2O(liq) \Rightarrow$ $OH-(aq) + NH_4+(aq)$

Equilibrium constants for weak bases called base ionization constants, K_b:

$$K_b = \frac{[NH_4^+][OH^-]}{[NH_3]}$$

Strong Acids and Bases

There are five strong monoprotic acids and three strong monoprotic bases

The five strong acids:

- * HNO₃
- * HCl
- * HBr
- * HI
- * HClO₄

The three strong bases: * NaOH * КОН

* LiOH

Ĥ

Memorize the eight strong acids and bases!

Assume that all other acids and bases are weak acids and weak bases unless told otherwise!

14.2 - pH and pOH

 $K_w = [H_3O^+] [OH^-] = 1.00 \times 10^{-14} \text{ at } 25 \text{ }^{\circ}\text{C}$

Add 0.0010 mol of NaOH to 1.0 L of pure water. Calculate [H₃O+] and [OH-].

 $2 H_2O(I) \rightleftharpoons H_3O+(aq) + OH-(aq)$

Le Chatelier predicts equilibrium shifts

 $[H_3O^+]$ < 10^{-7} at equilibrium.

Set up an ICE concentration table:

MAR

H₃O+ OH-

initial change equilib

 $K_w = (x)(0.0010 + x)$

Because x << 0.0010 M, assume

[OH-] = 0.0010 M

 $K_w = (x)(0.0010 + x) \approx (x)(0.0010) =$

[H₃O+](0.0010)

 $[H_3O^+] = K_w / 0.0010$

 $[H_3O^+] = 1.0 \times 10^{-11} M$

14.2 - pH and pOH

Add 0.0010 mol of NaOH to 1.0 L of pure water. Calculate $[H_3O^+]$ and $[OH^-]$.

Solution:

[OH-] = 0.0010 M and

 $[H_3O^+] = 1.0 \times 10^{-11} M$

This solution is consider basic because $[OH-] > [H_3O+]$

There must be a better way to tell if something is basic or acidic!

A common way to express acidity and basicity is with pH

pH = - log [H₃O⁺]MAR

Søren Sørensen, creato of the pH scale

In a **neutral** solution. $[H_3O+] = [OH-] = 1.0 \times 10^{-7} (25 °C)$ $pH = -log (1.0 \times 10^{-7})$ = -(-7.00) = 7.00

pH = 7.00 for neutral solutions!

More on pH

MAR

What is the pH of the 0.0010 M NaOH solution?

 $[H_3O^+] = 1.0 \times 10^{-11} M$

 $pH = - log (1.0 \times 10^{-11}) = 11.00$

Classification	Relative Ion	pH at 25 °C
acidic	[H ₃ O+] > [OH-]	pH < 7
neutral	[H ₃ O ⁺] = [OH ⁻]	pH = 7
basic	[H ₃ O+] < [OH-]	pH > 7

General conclusion -

Basic solution pH > 7Neutral pH = 7Acidic solution pH < 7

Public Enemy are not scientists!

pH to Hydronium

If the pH of Diet Coke is 3.12, it is

Because $pH = - log [H_3O^+]$ then

log[H₃O⁺] = -pH

Take antilog and get

 $[H_3O^+] = 10^{-pH}$

 $[H_3O^+] = 10^{-3.12}$

 $= 7.6 \times 10^{-4} M$

Logarithms and Sig Figs

Logarithms are exponents with special sig figs rules.

General rule:

log of experimentally measured number with N sig figs give numbers with N decimal places after the decimal (digit before decimal only indicates magnitude)

Examples:

log 3.07*10-3 = -2.513 (3 sigs, 3 places after decimal) $-\log 1.1*10^{-8} = 7.96$ (2 sigs, 2 places after decimal) $10^{-3.12} = 7.6 * 10^{-4}$ (2 places after decimal, 2 sigs)

pOH and Other pX Scales

pX = -log XIn general

and: $pK_a = - log K_a$

and so: pOH = -log[OH-]

 $K_w = [H_3O^+][OH^-] = 1.000 \times 10^{-14} \text{ at } 25 \circ C$

Take the negative log of both sides

 $-\log (10^{-14}) = -\log [H_3O^+] + (-\log [OH^-])$

$$14.00 = pH + pOH$$

also: $14 = pK_a + pK_b$

MAR

MAR

acidic solutions:

pH ↓,

[H₃O⁺] ↑,

[OH·] ↓,

↑ HOq

basic solutions: pH 1,

[H₃O+] ↓,

[OH·] ↑,

 $K_{\rm w}$ = [H₃O+] [OH-] = 1.000 x 10⁻¹⁴ at 25 °C $^{
m pOH}$ $^{\downarrow}$ pH + pOH = 14

14.3 - Relative Strengths of Acids and Bases

All weak acids have conjugate bases, and all weak bases have conjugate acids

Weak acids and bases ionize to a very small extent (< 5%)

Weak acids use K_a (acid ionization constants) while weak bases use K_b (base ionization constants.)

K_a and K_b values are much less than one

Conjugate Base acetic, CH₃CO₂H CH₃CO₂-, acetate ammonium, NH₄+ NH₃, ammonia bicarbonate, HCO₃- CO₃²⁻, carbonate

 $HA(aq)\,+\,H_2O(\ell)\, \, {\color{red}\longleftarrow}\,\, H_3O^+(aq)\,+\,A^-(aq)$

 $B(aq)\,+\,H_2O(\ell)\, \, {\color{red}\Longleftrightarrow}\,\, BH^+(aq)\,+\,OH^-(aq)$

 $\textit{K}_{b} = \frac{[BH^{+}][OH^{-}]}{5}$

Combining Conjugate K_a and K_b Expression

If a weak acid's Ka expression is combined with its conjugate base Kb expression, something interesting

happens:

 $HA + H_2O \rightleftharpoons H_3O^+ + A^-$

 $A + H_2O \rightleftharpoons HA + OH$

 $2 H_2O \rightleftharpoons H_3O^+ + OH^- K_a^*K_b = K_w$

Important relations: $K_a * K_b = K_w$ and $pK_{a} + pK_{b} = 14$

Increasing

strength

MAR

Equilibria and pH of a Weak Acid

Calculate the equilibrium concentrations of HOAc, H_3O^+ , OAc-, and the pH for a 1.00 M HOAc solution. HOAc + $H_2O \rightleftharpoons H_3O^+ + OAc^-$

Step 2. Write K_a expression

$$K_a = 1.8 \times 10^{-5} = \frac{[\text{H}_3\text{O}^+][\text{OAc}^-]}{[\text{HOAc}]} = \frac{\text{x}^2}{1.00 - \text{x}}$$

This is a quadratic equation; solve using the quadratic formula ... but there's a better way, sometimes!

First assume x is very small because K_a is so small. If so:

Therefore,
$$K_a = 1.8 \times 10^{-5} = \frac{x^2}{1.00}$$

 $\mathbf{x} = [\mathrm{H_3O^+}] = [\mathrm{OAc}] = [1.8 \times 10^{-5} \bullet 1.00]^{1/2} = [\mathrm{K_a} \bullet \mathrm{C_a}]^{1/2}$

MAR $C_a = concentration (M) of acid$

Equilibria and pH of a Weak Acid (continued)

Calculate the equilibrium concentrations of HOAc, H_3O^+ , OAc, and the pH for a 1.00 M HOAc solution. HOAc + $H_2O \rightleftharpoons H_3O^+ + OAc^-$

Step 3. Solve K_a approximate expression:

$$K_a = 1.8 \times 10^{-5} = \frac{x^2}{1.00}$$

 $x = [H_3O^+] = [OAc^-] = [1.8x10^{-5} \cdot 1.00]^{1/2}$

 $x = [H_3O^+] = [OAc^-] = 4.2 \times 10^{-3} M$

 $pH = -log [H_3O^+] = -log (4.2 \times 10^{-3}) = 2.37$

[HOAc] = 1.00 M no change!

MAR Exact solution with quadratic: x = 0.0042, x = -0.0043

Approximation Method for the pH of a Weak Acid

Consider the approximate expression:

$$K_a = 1.8 \times 10^{-5} = \frac{x^2}{1.00}$$
 $X = [H_3O^+] = [K_a \cdot 1.00]^{1/2}$

For many weak acids

$$[H_3O^+] = [conj. base] = [K_a \cdot C_a]^{1/2}$$

where C_a = initial concentration of acid (M)

Useful Rule:

If
$$100 \cdot K_a < C_{a'}$$
 then $[H_3O^+] = [K_a \cdot C_a]^{1/2}$

or pH = - log
$$[K_a \circ C_a]^{1/2}$$
 Important Equation!
Quick method to find pH
of Weak Acids!

MAR

Equilibria Involving A Weak Acid

Calculate the pH of a 0.0010 M solution of formic acid, HCO₂H.

$$HCO_2H + H_2O \rightleftharpoons HCO_2^- + H_3O^+$$

$$K_a = 1.8 \times 10^{-4}$$

Approximate solution

100 * K, is not less than Ca!

$$[H_3O^+] = [K_a \cdot C_a]^{1/2} = 4.2 \times 10^{-4} M, pH = 3.37$$

Exact Solution

$$[H_3O^+] = [HCO_2^-] = 3.4 \times 10^{-4} M$$

$$[HCO_2H] = 0.0010 - 3.4 \times 10^{-4} = 0.0007 M$$

$$AR$$
 pH = 3.47

Equilibria Involving A Weak Base

Calculate the pH of a 0.010 M NH₃ solution. $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH - K_b = 1.8 \times 10^{-5}$

Step 1. Define equilibrium concs.

As before, assume x is small because

100•K_b < C_b, so

[NH₃] $[NH_4^+]$ [OH-]

 $x = [OH-] = [NH_4+] = [K_b \circ C_b]^{1/2}$

initial

 $x = 4.2 \times 10^{-4} M$

change equilib

check: [NH₃] = 0.010 - 4.2 x 10-4

 $[NH_3] \approx 0.010 M$

$$K_b = 1.8 \text{ x } 10^{-5} = \frac{[\text{NH}_4^+][\text{OH}^-]}{[\text{NH}_3]} = \frac{\text{x}^2}{0.010 - \text{x}}$$

Valid approximation!

MAR

Exact solution with quadratic: x = 0.00042, x = -0.00043

Equilibria Involving A Weak Base

Calculate the pH of a 0.010 M NH₃ solution. $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^ K_b = 1.8 \times 10^{-5}$

[OH-] = 4.2 x 10-4 M (last slide)

Step 3. Calculate pH

 $pOH = -log [OH-] = -log [4.2 \times 10^{-4}] = 3.37$

Because pH + pOH = 14.00,

pH = 14.00 - 3.37 = 10.63

Important Equation! or: pH = 14 + log [K_b•C_b]^{1/2} = 10.63 Important Equation:
Quick method to find pH of Weak Bases!

MAR

Overview: Calculating pH of Acids & Bases

Strong acid: $pH = -\log C_2 = -\log [H_3O^+]$

Strong base:

 $pH = 14 + log C_b = 14 + log [OH-]$

Weak acid:

 $pH = - log [K_a \cdot C_a]^{1/2} (100 * K_a < C_a)$

Weak base:

MAR

 $pH = 14 + log [K_b \circ C_b]^{1/2} (100 * K_b < C_b)$

Memorize!

Mixing Equimolar Acids and Bases

Mixing equal moles of strong acids with strong bases ("equimolar")

results in a neutral solution of water and a 'salt'; pH = 7

 $HCl(aq) + NaOH(aq) \rightarrow H_2O(l) + NaCl(aq)$

Mixing equimolar amounts of weak bases with strong acids results in an acidic solution due to the conjugate acid of the weak base; pH < 7

 $H_3O^+(aq) + NH_3(aq) \rightarrow H_2O(l) + NH_4^+(aq)$

Mixing equimolar amounts of weak acids with strong bases results in a basic solution due to the conjugate base of the weak acid; pH > 7

> $CH_3CO_2H(aq) + OH(aq) \rightarrow$ $H_2O(I) + CH_3CO_2-(aq)$ Weak base.

> > pH is basic

Weak acid. pH is acidic

Types of Acid/Base Reactions: Summary

Knowing the pH when the moles of acid and base are equal ("equivalence") can be important

• Charac	cteristics of Acid	-Base Reactions	
	Example	Net Ionic Equation	Species Present After Equal Molar Amounts Are Mixed; pH
id + strong base	HCl + NaOH	$H_30^+(aq) + 0H^-(aq) \Longrightarrow 2 H_20(\ell)$	Cl^- , Na^+ , $pH = 7$
id + weak base	HCl + NH ₃	$H_30^+(aq) + NH_3(aq) \Longrightarrow NH_4^+(aq) + H_20(\ell)$	Cl^- , NH_4^+ , $pH < 7$
d + strong base	HCO ₂ H + NaOH	$HCO_2H(aq) + OH^-(aq) \longrightarrow HCO_2^-(aq) + H_2O(\ell)$	HCO_2^- , Na^+ , $pH > 7$
d + weak base	HCO ₂ H + NH ₃	$HCO_2H(aq) + NH_3(aq) \rightleftharpoons HCO_2^-(aq) + NH_4^+(aq)$	HCO_2^- , NH_4^+ , pH dependent on K_a and K_b of conjugate acid and base.

MAR

MAR

Step 1.

MAR

Type

Strong act

Strong act

Weak acid Weak acid

14.4 - Hydrolysis of Salts

Salts (ionic compounds) are neutral in water if the hydronium and hydroxide concentrations are equal.

However, often the cation and/or anion are weak acids or bases, which affects the pH of the solution.

 $MX + H_2O \rightarrow acidic or basic solution?$ Consider NH_4Cl : For Chloride:

base

 $NH_4Cl(aq) \rightarrow NH_4^+(aq) + Cl^-(aq)$ (a) Reaction of Cl⁻ with H_2O

Cl + H_2O \rightarrow HCl + OH-

acid

base

Cl- ion is a very weak base because its conjugate acid (HCl) is strong.

acid

Therefore, Cl- → neutral solution

All conjugates of strong acids (and bases) do not affect the pH of the solution

Acid-Base Properties of Salts

 $MX + H_2O \rightarrow$ acidic or basic solution? For ammonium:

 $NH_4Cl(aq) \rightarrow NH_4+(aq) + Cl-(aq)$

b) Reaction of NH₄+ with H₂O

 $NH_4^+ + H_2O \rightarrow NH_3 + H_3O^+$ acid base base acid

 NH_4^+ ion is a moderate acid ($K_a = 5.6 \times 10^{-10}$) because its conjugate base (NH_3) is weak.

Therefore, $NH_4^+ \rightarrow acidic solution$

Conclusion:

NH₄Cl in water creates an acidic solution due to the ammonium ion (chloride is neutral)

Acid-Base Properties of Salts

			and Base I queous Soli		of Some	Ions
	Neuti	ral	Basic			Acidic
Anions	Cl = Br= I=	NO ₃ ⁻ CLO ₄ ⁻	CH ₃ CO ₂ ⁻ HCO ₂ ⁻ CO ₃ ²⁻ S ²⁻ F ⁻	CN ⁻ PO ₄ ³⁻ HCO ₃ ⁻ HS ⁻ NO ₂ ⁻	50 ₄ ²⁻ HP0 ₄ ²⁻ 50 ₃ ²⁻ OCl ⁻	HSO ₄ ⁻ H ₂ PO ₄ ⁻ HSO ₃ ⁻
Cations	Li ⁺ Na ⁺ K ⁺	Mg ²⁺ Ca ²⁺ Ba ²⁺	AI(H ₂ O) ₅ (OH) ²⁺ and analogous ions		Al(H ₂ O) ₆ ³⁺ and hydrated transition metal cation (Fe(H ₂ O) ₆ ³⁺) NH ₄ ⁺	

MAR

MAR

Acid-Base Properties of Salts

Calculate the pH of a 0.10 M solution of Na₂CO₃

Na⁺ + H₂O \rightarrow neutral (conjugate of NaOH) CO₃²⁻ + H₂O \rightleftharpoons HCO₃· + OH· base acid acid base

> K_b for carbonate = 2.1 x 10-4 Set up ICE concentration table $[CO_3^2]$ $[HCO_3^-]$ [OH-]

 $[{\rm CO_3^2}]$ $[{\rm HCO_3}]$ $[{\rm OH}]$ initial 0.10 0 0 change equilib

 $K_b = \frac{[\text{HCO}_3^-][\text{OH}^-]}{[\text{CO}_3^{-2}^-]} = \frac{x^2}{0.10 - x}$ $100 \cdot \kappa_b < C_b \text{ so assume}$ $0.10 - x \approx 0.10$

 $x = [HCO_3 \cdot] = [OH \cdot]$ $x = [K_b \cdot C_b]^{1/2} = 0.0046 M$

Exact solution with quadratic: x = 0.0045, x = -0.0047pOH = - log [OH·] = 2.34

pH + pOH = 14, so pH = 11.66; solution is _

or pH = 14 + $\log [K_b \circ C_b]^{1/2} = 11.66$

Transition Metals and Hydrolysis

Many transition metals (and Al) dissolved in water undergo hydrolysis to give acidic solutions.

 $[Cu(H_2O)_4]^{2+} + H_2O ---> [Cu(H_2O)_3(OH)]^+ + H_3O^+$

This is a K_a expression

This explains why water solutions of transition metals and Al are acidic.

Page III-14-6 / Chapter Fourteen Lecture Notes

14.5 - Polyprotic Acids

Monoprotic acids have a single ionizable hydrogen. Examples: HCl, HF, HNO₂, etc. Weak acids have a single K_a value.

Polyprotic acids have more than one ionizable hydrogens (more than one H capable of forming hydronium) and more than one Kavalue. Examples: H₂SO₄

(diprotic), H₃AsO₄ (triprotic), etc.

Examples: For **triprotic** phosphoric acid **H**₃**PO**₄:

 $H_3PO_4(aq) + H_2O(l) \rightleftharpoons H_2PO_4^{-}(aq) + H_3O^{+}(aq)$

$$K_{a1} = \frac{[H_3O^+][H_2PO_4^-]}{[H_2PO_4]} = 7.2x10^{-3}$$

 H_2PO_4 -(aq) + $H_2O(I) \rightleftharpoons HPO_4^2$ -(aq) + H_3O^+ (aq)

$$K_{a2} = \frac{[H_3O^+][HPO_4^{2-}]}{[H_2PO_4^-]} = 6.3x10^{-8}$$

 $HPO_4^{2-}(aq) + H_2O(I) \rightleftharpoons PO_4^{3-}(aq) + H_3O^{+}(aq)$

$$K_{a3} = \frac{[H_3O^+][PO_4^{3-}]}{[HPO_4^{2-}]} = 4.2x10^{-13}$$

 $K_{a1} > K_{a2} > K_{a3}$

We usually neglect $[H_3O^+]$ produced after the first dissociation.

Polyprotic Acids

Many polyprotic acids known

*Red type indicates the ionizable protons.

MAR

Several **dibasic** (Sr(OH)₂) and **tribasic** (Al(OH)₃) bases known

Polyprotic Acids and pH

Example: Diprotic ascorbic acid (i.e.

Vitamin C, H_2 Asc) has $K_{a1} = 1.0 \times 10^{-5}$ and $K_{a2} = 5 \times 10^{-12}$. Calculate the pH of 0.050 M

Note: $100^* K_{a1}$ and $100^* K_{a2}$ are less than C_a (0.050 M), so $[H_3O^+] = \sqrt{K_{ax}^* C_a}$

Find [H₃O+] from K_{a1} and K_{a2} , add them up, then find pH MAR

 $K_{a1} = \frac{[HAsc][H_3O^+]}{[H_2Asc]} = 1.0x10^{-5} = \frac{x^2}{0.050}$

 $x = [H_3O^+] = [HAsc^-] = \sqrt{(0.050)(1.0x10^{-5})} = 7.1x10^{-4} M$

$$[H_3O^+]_{from \, HAsc.} = \sqrt{[HAsc](K_{a2})}$$

= $\sqrt{(7.1\times10^{-4})(5\times10^{-12})} = 6\times10^{-8} \text{ M}$

 $[H_3O^+]_{Total} = 7.1x10^{-4}\,M + 6x10^{-8}\,M \approx 7.1x10^{-4}\,M$

$$pH = - \log (7.1 \times 10^{-4} \, M) = 3.15$$

Only [H_3O^+] from K_{a1} affects pH, K_{a2} contributes minor amount of [H_3O^+]

14.6 - Buffers

A buffer is a solution with both a weak acid and its conjugate base (or a weak base and its conjugate acid.)

Buffers resist drastic changes to the pH of the solution; very helpful in our bodies, living systems, etc.

A 100 mL sample of dilute HCl is adjusted to pH 5.00.

A 100 mL sample of an acetate buffer is

adjusted to pH 5.00.

The addition of 1 mL of strong acid (left) or strong base (right) changes the pH very little.

MAR

The acetate buffer is made by mixing 1 M CH₃COOH (a weak acid) with 1 M NaCH₃COO (which provides the conjugate base, CH₃COO·)

Buffers

Buffers resist strong acids and bases utilizing weak bases and acids within the buffer.

Consider a buffer HA / A^{-} system:

- * Added strong base (OH·)

 neutralized by weak acid HA:

 HA(aq) + OH-(aq) → A-(aq) + H₂O(l)
- * Added strong acid (H₃O+)
 neutralized by weak base A-:
 A-(aq) + H₃O+(aq) → HA(aq) + H₂O(l)

CH_COOH(ap) + H_COI) = H_CO(ap) + CH_COO (ap)

Buffer solution
equipmole in
old storing acid
of storing base

Add H_CO'

Adding strong acid (H₃O+) makes solution more acidic due to increased amount of weak acid (acetic acid)!

Likewise, <u>adding strong base</u> (OH-) makes solution more basic due to increased amount of weak base (acetate)!

Buffer Solutions

The function of a buffer is to resist changes in the pH of a solution.

Buffers always consist of a weak acid and its conjugate base (or a weak base and its conjugate acid)

Weak Acid Conjugate Base HOAc = acetic acid $OAc^- = acetate ion$ **HOAc** OAc-HPO₄2-H₂PO₄-Weak Base Conjugate Acid NH_3 NH_4 + HNO₂ NO₂-Buffers and Henderson-Hasselbalch Guide MAR

Buffer Solutions

HOAc = acetic acid,OAc = acetate ion

Problem: What is the pH of a buffer that has [HOAc] = 0.700 M and [OAc] = 0.600 M?

 $HOAc + H_2O \rightleftharpoons OAc + H_3O +$

[HOAc]

[OAc-]

[H₃O+]

 $K_a = 1.8 \times 10^{-5}$

initial change equilib

Assuming that x << 0.700 and 0.600, we have

0, we have
$$K_a = 1.8 \times 10^{-5} = \frac{[\text{H}_3\text{O}^+](0.600)}{0.700}$$

 $[H_3O^+] = 1.8 \times 10^{-5} * (0.700 / 0.600) = 2.1 \times 10^{-5}$

MAR and pH = 4.68

Buffer Solutions

Notice that the expression for calculating the H+ concentration of the buffer is:

$$[H_3O^+] = \frac{\text{Orig. conc. of HOAc}}{\text{Orig. conc. of OAc}} \bullet K_a$$

$$[H_3O^+] = \frac{[Acid]}{[Conj. base]} \bullet K_a \text{ or } [OH^-] = \frac{[Base]}{[Conj. acid]} \bullet K_b$$

Notice that [H₃O+] or [OH-] depends on K and the ratio of acid and base concentrations

MAR

The Henderson-Hasselbalch Equation

$$[H_3O^+] = \frac{[Acid]}{[Conj. base]} \bullet K_a$$

Take the negative log of both sides of this equation:

The pH is determined largely by the pK_a of the acid and then adjusted by the ratio of acid and conjugate base. *Important equation!*

MAR

The Henderson-Hasselbalch Equation

$$pH = pK_a + log \frac{[Conj. base]}{[Acid]}$$

Note that the concentrations of the acid and conjugate base are not important

It is the ratio of the number of moles that affects pH
Result: diluting a buffer solution does not change its pH
Result: You can use moles or molarity when using
Henderson-Hasselbalch!

See: Buffers and Henderson-Hasselbalch Guide

MAR

Adding an Acid to a Buffer

Problem: What is the pH when 1.00 mL of 1.00 M HCl is added to a) 1.00 L of pure water (before HCl, pH = 7.00)

b) 1.00 L of buffer that has [HOAc] = 0.700 M and [OAc-] = 0.600 M

(pH = 4.68 before HCl, earlier problem)

Solution to Part a:

pH of strong acid = $-\log [H_3O^+] = -\log [HCI]$

 $M_1 \bullet V_1 = M_2 \bullet V_2$

1.00 M * 1.00 mL = M₂ • 1001 mL

 $M_2 = 9.99 \times 10^{-4} M = [H_3O^+]$

 $pH = -\log(9.99 \times 10^{-4}) = 3.000$

MAR

Adding an Acid to a Buffer

What is the pH when 1.00 mL of 1.00 M HCl is added to

a) 1.00 L of pure water (pH = 7.00; after HCl, pH = 3.000)

b) 1.00 L of buffer with [HOAc] = 0.700 M and [OAc-] = 0.600 M (pH = 4.68 before HCI)

Solution to Part b:

Step 1: via stoichiometry,

H₃O+ (from HCl) + OAc- (from buffer) → HOAc (from buffer)

[H₃O+] [OAc-] [HOAc]

Initial Change

After rxn

Now we need to calculate pH using our new buffer solution

Page III-14-8 / Chapter Fourteen Lecture Notes

MAR

Adding an Acid to a Buffer

What is the pH when 1.00 mL of 1.00 M HCl is added to

a) 1.00 L of pure water (pH = 7.00; after HCl, pH = 3.000)

b) 1.00 L of buffer with [HOAc] = 0.700 M and [OAc-] = 0.600 M ($\rho H = 4.68$ before HCI)

Solution to Part b:

MAR

Step 2: Equilibrium: $HOAc + H_2O \rightleftharpoons H_3O^+ + OAc^-$

[HOAc] [OAc-] [H₃O+]

Initial Change

Equilibrium *Ignore x relative to 0.701 and 0.599*

Ignore x relative to 0.701 and 0.599 $x = [H_3O^+]$

 $[H_3O^+] = \frac{[HOAc]}{[OAc^-]} \bullet K_a = \frac{0.701}{0.599} \bullet (1.8 \times 10^{-5})$

The pH has not changed upon adding HCl to the buffer!

Adding an Acid to a Buffer Using HH Equation

The **Henderson-Hasselbalch equation** can be used to calculate the pH when 1.00 mL of 1.00 M HCl is added to 1.00 L of buffer that has [HOAc] = 0.700 M and [OAc-] = 0.600 M

We can use an alternate form of the H-H equation:

$$pH = pK_a + log \frac{\left(mol_{Conj\ base} - mol_{strong\ acid}\right)}{\left(mol_{weak\ acid} + mol_{strong\ acid}\right)}$$

$$pK_a = -\log (1.8 * 10^{-5}) = 4.74$$

pH = 4.74 + log
$$\frac{(0.600 - 0.00100)}{(0.700 + 0.00100)}$$
 = 4.67

Answer in good agreement with "double ice" method (4.68)
See: Buffers and Henderson-Hasselbalch Guide

Adding Acids and Bases to Buffers

For adding strong acids to buffers:

pH = pK_a + log
$$\frac{\text{(mol_{Conj base - mol_{strong acid}})}}{\text{(mol_{weak acid + mol_{strong acid}})}}$$

For adding strong bases to buffers:

pH = pK_a + log
$$\frac{\text{(mol_{Conj base + mol_{strong base})}}}{\text{(mol_{weak acid - mol_{strong base})}}}$$

Very useful for calculating pH changes in buffers!

See: Buffers and Henderson-Hasselbalch Guide

MAR

MAR

Preparing a Buffer

You want to create a buffer solution with a pH = 4.30.

This means $[H_3O^+] = 10^{-pH} = 5.0 \times 10^{-5} M$

It is best to choose an acid such that:

*
$$[H_3O^+] \approx K_{a'}$$
 or

You get the exact $[H_3O^+]$ (or pH) by adjusting the ratio of weak acid to conjugate base.

For a pH = 4.30 buffer, we will look for a value of K_a $\approx 5.0 \times 10^{-5}$ or a p $K_a \approx 4.30$

MAR Hasselbalch

Henderson

Preparing a Buffer

Which of the following three systems would be best to create a buffer solution at pH = 4.30 (or [H₃O⁺] = 5.0×10^{-5} M)?

Possible Buffers	K_{a}	pK_a
HSO ₄ -/ SO ₄ 2-	1.2 x 10 ⁻²	1.92
HOAc / OAc-	1.8 x 10 ⁻⁵	4.74
HCN / CN-	4.0 x 10 ⁻¹⁰	9.40

Best choice is acetic acid / acetate - closest in

[H₃O⁺] to K_a or pH to pK_a!

Preparing a Buffer

Create a buffer solution at pH = 4.30 (or $[H_3O^+] = 5.0 \times 10^{-5} M$) using HOAc and OAc.

Equal moles of acid (HOAc) and base (OAc) would create pH = 4.74 (= pK_a). What ratio of acid to base is needed to get the buffer to 4.30?

$$K_a = \frac{[H_3O^+][OAc^-]}{[HOAc]}$$
, or rearranged:

$$[H_3O^+] = 5.0 \times 10^{-5} = \frac{[HOAc]}{[OAc^-]} (1.8 \times 10^{-5})$$

Solve for [HOAc] / [OAc] ratio: = $[H_3O^+] / K_a = 2.8 / 1$

Create a buffer solution at pH = 4.30 (or [H₃O⁺] = 5.0×10^{-5} M) using HOAc and OAc.

[HOAc] / [OAc-] ratio = 2.8 / 1 (previous slide)

Therefore, if you use 0.10 mol of NaOAc and 0.28 mol of HOAc, you will have pH = 4.30.

> Could have also used Henderson Hasselbalch:

 $pH = pK_a + log \frac{[Conj. base]}{r}$ 4.30 = 4.74 + log [Conj. base]

 $10^{-0.44} = 0.36 = [base]_{r}$

MAR

MAR

Buffers in Our Bodies

The blood pH in our bodies is regulated by a carbonic acid / hydrogen carbonate ("bicarbonate") buffer system:

MAR

Exhaling CO₂ raises the pH of our blood!

14.7 - Acid-Base Titrations

In an acid-base titration a known concentration of base (or acid) is slowly added to a solution of acid (or base)

A pH meter (or indicator) is used to determine when the solution has reached the equivalence point (where moles of acid = moles of base)

MAR

Titrations

Adding NaOH from the buret to acetic acid:

MAR

Initially the pH increases very slowly, then rises dramatically at equivalence point (midpoint of the vertical part of the curve pH rises, then levels off as equivalence point passed

Strong Acid + Strong Base

Strong Acid + Strong Base

Initial:

$$pH = -\log \left[n_{sa}/V_{sa}\right]$$

Pre-equivalence:

$$pH = -log \left(\frac{n_{sa} - n_{sb}}{V_{sa} + V_{sb}} \right)$$

Equivalence:

Post-equivalence:

$$pH = 14 + log \left(\frac{n_{sb} - n_{sa}}{V_{sb} + V_{sa}} \right)$$

MAR

Weak Acid + Strong Base Equivalence point dominated by conjugate base of weak acid A weak acid + strong base titration Pre-equivalence has weak acid and its conjugate base, acts like a "buffer" At half-equivalence, pK_a $pH = pK_a$ Pinitial (only n_{a-1}) All half-equivalence $(n_{aa} > n_{ab})$ pre-equivalence $(n_{aa} > n_{ab})$

MAR

Weak Acid + Strong Base

Initial:

$$pH = -log \sqrt{K_a C_{wa}}$$

Pre-equivalence:

$$pH = pK_a + log \left(\frac{n_{sb}}{n_{wa} - n_{sb}} \right)$$

Equivalence:

$$pH = 14 + log \sqrt{\left(\frac{K_w}{K_a}\right) \left(\frac{n_{wa}}{V_{wa} + V_{sb}}\right)}$$

Post-e

Post-equivalence: pH = 14 +
$$log \left(\frac{n_{sb} - n_{wa}}{V_{sb} + V_{wa}} \right)$$

Differences in Titration Curves

With strong acids, equivalence point always equal to 7

With weak acids, equivalence point will be basic (> 7)

Half Equivalence Point important with weak acids;

at that point, $pH = pK_a$ (great method to find K_a !)

MAR

Polyprotic Acids

pH Indicators

Equivalence point important in titration, can use an indicator to signify equivalence point

Indicator color change must reflect equivalence point to be useful!

MAR

pH < 6.0

6.0 pH > 7.5

pH = 6.0-7.5

pH Indicators

MAR

Which indicator to use? Phenolphthalein or Methyl Red?

The pH at the equivalence **point** in this titration is < 7.

Methyl red is the indicator of choice here.

End of Chapter 14

See

- Chapter Fourteen Study Guide
- Chapter Fourteen Concept Guide
- Types of Equilibrium Constants (handout)
- Buffers and Henderson-Hasselbalch Guide (handout)
- Important Equations (following this slide)
- End of Chapter Problems (following this

MAR

Important Equations, Constants, and Handouts from this Chapter:

pH_(strong acid) = - log C_a pH_(strong base) = 14 + log C_b

 $pH_{(weak\ acid)} = -log\ [K_a*C_a]^{1/2}$ $pH_{\text{(weak base)}} = 14 + log [K_b * C_b]^{1/2}$

 $14 = pH + pOH = pK_a + pK_b$

 $K_w = 1.00 * 10^{-14} = [H_3O^+][OH^-] = K_a * K_b (25 °C)$

Acid-Base Theory: Brønsted theory, conjugate acid and base, strong and weak acids and bases, know the 8 strong acids and bases!, autoionization, Lewis theory, electron pair acceptor and donator, salt acidity/basicity, formation constants (K_f)

- Manipulating Equilibrium Constant Expressions
- Types of Equilibrium Constants
- Table of K_a and K_b values in Problem Set #2

MAR. Buffers and Henderson-Hasselbalch Guide

HOAc + H₂O ⇌ H₃O+ + OAc-

pH = pK_a + log
$$\frac{[\text{Conj. base}]}{[\text{Acid}]}$$

pH = pK_a + log $\frac{[\text{mol}_{\text{Conj base}} - \text{mol}_{\text{strong acid}})}{[\text{mol}_{\text{weak acid}} + \text{mol}_{\text{strong acid}})}$

$$pH = pK_a + log \frac{(mol_{Conj base} + mol_{strong base})}{(mol_{weak acid} - mol_{strong base})}$$

- End of Chapter Problems: Test Yourself

 1. An aqueous solution has a pH of 3.75. What is the hydronium ion concentration of the solution? What is the hydroxide ion concentration of the solution? Is it acidic or

 - basic?
 What is the pH of a 0.0015 M solution of Ba(OH)₂?
 Epinephrine hydrochloride has a pK_a value of 9.53. What is the value of K_a ?
 A weak base has $K_b = 4.7 \times 10^{-11}$. What is the value of K_a for the conjugate acid?
 A 0.015 M solution of hydrogen cyanate, HOCN, has a pH of 2.67. What is the hydronium ion concentration in the solution? What is the ionization constant, K_a , for the acid?
 A 0.015 M solution of a base has a pH of 10.00. What are the hydronium and
 - A 0.015 M solution of a base has a pH of 10.09. What are the hydronium and hydroxide ion concentrations of this solution? What is the value of K_0 for this

 - usser Which of the following substances should be classified as a Lewis acid and a Lewis base: Fe^{2} (a₀), CH_0NH_2 Does the pH of the solution increase, decrease, or stay the same when you: a) Add solid ammonium chloride to a dilute aqueous solution of NH_3 ; b) Add solid sodium acetate to a dilute aqueous solution of acetic acid; c) Add solid NaCl to a
 - sodium acetate to a dilute aqueous solution of acetic acid; c) Add solid NaCl to a dilute aqueous solution of NaOH?

 For each of the following cases, decide whether the pH is less than 7, equal to 7, or greater than 7: a equal volumes of 0.10 M acetic acid, Chi-Co-H, and 0.10 M KOH are mixed; b) 25 m L of 0.015 M HCl; c)

 150 m L of 0.20 M HNOs is mixed with 75 m L of 0.40 M NaOH

 - 10. What is the pH of a solution that consists of 0.20 M ammonia, NH₃, and 0.20 M ammonium chloride, NH₄Cl? (K₅ = 5.6 x 10⁻¹⁰)

 11. What mass of sodium acetate, NaCH₂O₂, must be added to 1.00 L of 0.10 M acetic acid to give a solution with a pH of 4.50? (K₈ = 1.8 x 10⁻⁵)

MAR

End of Chapter Problems: Answers

- $[H_3O^+]$ = 1.8 × 10⁻⁴ M, $[OH^-]$ = 5.6 × 10⁻¹¹ M, acidic
- 11 48
- 3.0 x 10⁻¹⁰ 2.1 x 10⁻⁴
- 5. 0.0021 M, 3.6 x 10⁻⁴ (K_a = 3.0 x 10⁻⁴ using short method) 6. [H₃O⁺] = 8.1 x 10⁻¹¹ M, [OH-] = 1.2 x 10⁻⁴ M, K_b = 9.7 x 10⁻⁷
- 1, 1; 20·1 − 0.1 × 10··· M, [0·r] = 1.2 × 10··· M, K₆ = 9.7 × 10·· 7
 Fe²·(aq) would be a Lewis acid, CH₃MH₂ would be a Lewis base
 a) pH decreases; b) pH increases; c) no change to pH
 a, pH > 7 b, pH < 7 c, pH = 7
 10, pH = 9.25
 11, 4.7 g