CH 223 Practice Problem Set #6

This is a **practice problem set** and not the actual graded problem set that you will turn in for credit.

Answers to each problem can be found at the end of this assignment.

Covering: Chapters Nineteen and Chapter Twenty-one and Chapter Guide Six

Important Tables and/or Constants: "Coordination Compounds" (Handout), "Organic Chemistry Nomenclature Guide" (Handout), "Organic Chemistry Lab" (Handout in Lab Packet)

- 1. Give the electron configuration for each of the following ions, and tell whether each is paramagnetic or diamagnetic.
 - a. Cr³⁺
 - b. V²⁺
 - c. Ni²⁺
 - d. Cu+
- 2. The following equations represent various ways of obtaining transition metals from their compounds. Balance each equation.
 - a. $Cr_2O_3(s) + Al(s) \rightarrow Al_2O_3(s) + Cr(s)$
 - b. $TiCl_4(1) + Mg(s) \rightarrow Ti(s) + MgCl_2(s)$
 - c. $[Ag(CN)_2]^{-1}(aq) + Zn(s) \rightarrow Ag(s) + [Zn(CN)_4]^{2-}(aq)$
 - d. $Mn_3O_4(s) + Al(s) \rightarrow Mn(s) + Al_2O_3(s)$
- 3. Which of the following ligands is expected to be monodentate and which might be polydentate?
 - a. CH₃NH₂ b. CH₃CN c. N₃-1 d. en e. Br-1 f. phen
- 4. Give the oxidation number of the metal ion in each of the following compounds.
 - a. [Mn(NH₃)₆]SO₄
- b. $K_3[Co(CN)_6]$
- c. $[Co(NH_3)_4Cl_2]Cl$ d. $Cr(en)_2Cl_2$
- 5. Write formulas for the following ions or compounds.
 - a. dichlorobis(ethylenediamine)nickel(II)
 - b. potassium tetrachloroplatinate(II)
 - c. potassium dicyanocuprate(I)
 - d. tetraamminediaquairon(II)
- 6. Name the following ions or compounds.
 - a. $[Ni(C_2O_4)_2(H_2O)_2]^{2-}$
 - b. $[Co(en)_2Br_2]^{+1}$
 - c. $[Co(en)_2(NH_3)Cl]^{2+}$
 - d. $Pt(NH_3)_2(C_2O_4)$
- 7. Give the name or formula for each ion or compound, as appropriate.
 - a. pentaaquahydroxoiron(III) ion
 - b. $K_2[Ni(CN)_4]$
 - c. $K[Cr(C_2O_4)_2(H_2O)_2]$
 - d. ammonium tetrachloroplatinate(II)
- 8. Draw all possible geometric isomers of the following.
 - a. Fe(NH₃)₄Cl₂
 - b. Pt(NH₃)₂(SCN)(Br) (SCN-1 is bonded to Pt²⁺ through S)
 - c. $Co(NH_3)_2(NO_2)_3$ (NO₂-1 is bonded to Co³⁺ through N)
 - d. $[Co(en)Cl_2]^{-1}$

- 9. Give the formula of the complex formed from one Co³⁺ ion, two ethylenediamine molecules, one water molecule, and one chloride ion. Is the complex neutral or charged? If charged, give the net charge on the ion.
- 10. What is the name of the straight (unbranched) chain alkane with the formula C₇H₁₆? What is the molecular formula for an alkane with 9 carbon atoms?
- 11. Which of the following is an alkane? Which could be a cycloalkane?
 - a. C_2H_4
 - b. C₅H₁₀
 - c. C₁₄H₃₀
 - d. C₇H₈
- 12. Draw the structure of each of the following compounds: a. 2,3-dimethylhexane b. 3-ethylheptane
- 13. Draw structures for the *cis* and *trans* isomers of 4-methyl- 2-hexene.
- 14. Give the systematic name or structure for the following alcohols, amines and ethers.
 - a. CH₃CH₂CH₂OH
 - b. CH₃CH₂CH₂CH₂OH
 - c. ethylamine
 - d. dipropylamine
 - e. dibutyl ether
 - f. 1-methoxypropane
- 15. Draw structural formulas for a. 2-pentanone, b. hexanal, and c. pentanoic acid.
- 16. Draw structural formulas for the following compounds: a. 1,3-dichlorobenzene
 - b. 1-bromo-4-methylbenzene
- 17. Draw structural formulas for the following acids and esters:
 - a. 2-methylhexanoic acid
 - b. pentyl butanoate (which has the odor of apricots)
 - c. octyl acetate (which has the odor of oranges)
- 18. Aldehydes and carboxylic acids are formed by oxidation of primary alcohols, and ketones are formed when secondary alcohols are oxidized. Typical oxidizing agents include K₂Cr₂O₇ or KMnO₄. Give the name and formula for the alcohol that, when oxidized, gives the following products:
 - a. CH₃CH₂CH₂CHO
 - b. 2-hexanone
- 19. Ketones can be reduced with LiAlH₄ or NaBH₄ to create alcohols. Describe how to prepare 2-pentanol beginning with the appropriate ketone.
- 20. Draw the structure and give the systematic name for the products of the following reactions:
 - a. $CH_3CH=CH_2 + Br_2 \rightarrow$
 - b. CH₃CH₂CH=CHCH₃ + H₂ \rightarrow
- 21. The compound 2-bromobutane is a product of addition of HBr to an alkene. Identify the alkene and give its name.
- 22. Draw structural formulas for all the alcohols with the formula C₄H₁₀O. Give the systematic name of each.
- 23. Draw structural formulas for all the primary amines with the formula C₄H₉NH₂. Name them.
- 24. Give structural formulas and systematic names for the three structural isomers of trimethylbenzene, C₆H₃(CH₃)₃.

25. Match up the isoelectronic ions in the following list:

$$Cu^+\ Mn^{2+}\ Fe^{2+}\ Co^{3+}\ Fe^{3+}\ Zn^{2+}\ Ti^{2+}\ V^{3+}$$

- 26. Identify the products of each reaction and balance the equation:
 - a. $CuSO_4(aq) + Zn(s) \rightarrow$
 - b. $Zn(s) + HCl(aq) \rightarrow$
- 27. One of the following nitrogen compounds or ions is not capable of serving as a ligand: NH₄+, NH₃, NH₂-1. Identify this species and explain your answer.
- 28. Give the name or formula for each ion or compound as appropriate:
 - a. tetraaquadichlorochromium(III) chloride
 - b. [Cr(NH₃)₅SO₄]Cl
 - c. sodium tetrachlorocobaltate(II)
 - d. *trans*-diaquadioxalatochromate(III) ion (oxalato = oxalate ion)
 - e. $[Rh(en)_3]^{3+}$
- 29. Draw the structure for cycloheptane. Is the seven-member ring planar? Is this an isomer of n-heptane? Explain.

Answers to the Practice Problem Set:

- 1. a. [Ar] $3d^3$, paramagnetic b. [Ar] $3d^3$, paramagnetic c. [Ar] $3d^8$, paramagnetic d. [Ar] $3d^{10}$, diamagnetic
- 2. Answers:
 - a. $Cr_2O_3(s) + 2 Al(s) \rightarrow Al_2O_3(s) + 2 Cr(s)$
 - b. $TiCl_4(\ell) + 2 Mg(s) \rightarrow Ti(s) + 2 MgCl_2(s)$
 - c. $2 [Ag(CN)_2]^{-}(aq) + Zn(s) \rightarrow 2 Ag(s) + [Zn(CN)_4]^{2-}(aq)$
 - d. $3 \text{ Mn}_3\text{O}_4(s) + 8 \text{ Al}(s) \rightarrow 9 \text{ Mn}(s) + 4 \text{ Al}_2\text{O}_3(s)$
- 3. monodentate: a, b, c, e polydentate: d, f
- 4. a. Mn²⁺ b. Co³⁺ c. Co³⁺ d. Cr²⁺
- 5. a. $[NiCl_2(en)_2]$ b. $K_2[PtCl_4]$ c. $K[Cu(CN)_2]$ d. $[Fe(NH_3)_4(H_2O)_2]^{2+}$
- 6. Answers:
 - a. diaquabis(oxalato)nickelate(II) ion
 - b. dibromobis(ethylenediamine)cobalt(II) ion
 - c. amminechlorobis(ethylenediamine)cobalt(III) ion
 - d. diammineoxalatoplatinum(II)
- 7. Answers:
 - (a) $[Fe(H_2O)_5OH]^{2+}$
 - (b) potassium tetracyanonickelate(II)
 - (c) potassium diaquabis(oxalato)chromate(III)
 - (d) $(NH_4)_2[PtCl_4]$
- 8. Answers:

- 9. $[Co(en)_2(H_2O)Cl]^+$, aquachlorobis(ethylenediamine)cobalt(III) ion. The complex has a +1 charge
- 10. n-heptane; C₉H₂₀
- 11. c. C₁₄H₃₀ is an alkane b. C₅H₁₀ could be a cycloalkane

12. Answers:

13. Answers:

$$H_3C$$
 H_3C
 $CH-CH_2-CH_3$
 H_3C
 $CH-CH_2-CH_3$
 H_3C
 H_3C
 $CH-CH_2-CH_3$
 $C=C$
 $C=C$
 $C=C$

trans-4-methyl-2-hexene

cis-4-methyl-2-hexene

14. Answers:

- a. 1-propanol
- b. 1-butanol

- d.
- C₄H₉OC₄H₉ e.
- f. CH₃OCH₂CH₂CH₃

15. Answers:

16. Answers:

a.
$$Cl$$

$$CH_3$$

$$b. \qquad CH_3$$

17. Answers:

18. Answers:

19. Reduction of 2-pentanone with LiAlH₄ or NaBH₄

20. Answers:

a.
$$H_3C$$
— CH - CH_2 — Br 1,2-dibromopropane

b. CH₃CH₂CH₂CH₂CH₃ pentane

21. Using 1-butene, $H_2C=CHCH_2CH_3 + HBr \rightarrow CH_3CHBrCH_2CH_3$

22. Answers:

23. Answers:

24. Answers:

$$CH_3$$
 CH_3
 CH_3

25. Cu^+ and Zn^{2+} ; Mn^{2+} and Fe^{3+} ; Fe^{2+} and Co^{3+} ; Ti^{2+} and V^{3+}

26. a.
$$Cu(s) + ZnSO_4(aq)$$
 b. $ZnCl_2(aq) + H_2(g)$

27. NH₄+

28. Give the name or formula for each ion or compound as appropriate:

- a. tetraaquadichlorochromium(III) chloride
- b. [Cr(NH₃)₅SO₄]Cl
- c. sodium tetrachlorocobaltate(II)
- d. *trans*-diaquadioxalatochromate(III) ion (oxalato = oxalate ion)
- e. $[Rh(en)_3]^{3+}$

trans-diaquadioxalatochromate(III)

29. Draw the structure for cycloheptane. Is the seven-member ring planar? Is this an isomer of n-heptane? Explain.

This is not an isomer of n-heptane; the number of atoms is different.