CH 223 Practice Problem Set #4

This is a **practice problem set** and not the actual graded problem set that you will turn in for credit.

Answers to each problem can be found at the end of this assignment.

Covering: Chapter Fifteen and Chapter Guide Four

Important Tables and/or Constants: Solubility Table (from the CH 221 Net Ionics lab or here: https://mhchem.org/sol), "Solubility Product Constant (K_{sp}) Values at 25 °C" and "Complex Ion Formation Constant (K_f) Values at 25 °C" at the end of problem set #4, "Solubility Guide" (Handout)

- 1. Predict whether each of the following is insoluble or soluble in water.
 - a. (NH₄)₂CO₃
 - b. ZnSO₄
 - c. NiS
 - d. BaSO₄
- 2. For each of the following insoluble salts, (i) write a balanced equation showing the equilibrium occurring when the salt is added to water and (ii) write the K_{sp} expression.
 - a. AgCN
 - b. NiCO₃
 - c. AuBr₃
- 3. When 1.55 g of solid thallium(I) bromide is added to 1.00 L of water, the salt dissolves to a small extent.

$$TlBr(s) \Longrightarrow Tl^{+}(aq) + Br^{-1}(aq)$$

The thallium(I) and bromide ions in equilibrium with TlBr each have a concentration of 1.9 x 10^{-3} M. What is the value of K_{sp} for TlBr?

- 4. You add 0.979 g of Pb(OH)₂ to 1.00 L of pure water at 25 °C. The pH is 9.15. Estimate the value of K_{sp} for Pb(OH)₂.
- 5. Estimate the solubility of calcium fluoride, CaF₂, (a) in moles per liter and (b) in grams per liter of pure water.

$$CaF_2(s) \Longrightarrow Ca^{2+}(aq) + 2 F^{-1}(aq)$$
 $K_{sp} = 5.3 \times 10^{-11}$

- 6. The $K_{\rm sp}$ value for radium sulfate, RaSO₄, is 3.7 x 10⁻¹¹. If 25 mg of radium sulfate is placed in 1.00 x 10² mL of water, does all of it dissolve? If not, how much dissolves?
- 7. Use $K_{\rm sp}$ values to decide which compound in each of the following pairs is the more soluble.
 - a. $PbCl_2(K_{sp} = 1.7 \times 10^{-5})$ or $PbBr_2(K_{sp} = 6.6 \times 10^{-6})$
 - b. HgS $(K_{sp} = 4.2 \text{ x } 10^{-11})$ or FeS $(K_{sp} = 8.0 \text{ x } 10^{-19})$
 - c. $Fe(OH)_2 (K_{Sp} = 4.9 \times 10^{-17}) \text{ or } Zn(OH)_2 (K_{Sp} = 3.0 \times 10^{-17})$
- 8. Compare the solubility, in milligrams per milliliter, of silver iodide, AgI, (a) in pure water and (b) in water that is 0.020 M in AgNO₃. (K_{SP} for AgI = 8.5×10^{-17})
- 9. You have a solution that has a lead(II) concentration of 0.0012 M.

$$PbCl_2(s) \Longrightarrow Pb^{2+}(aq) + 2 Cl^{-1}(aq)$$

If enough soluble chloride-containing salt is added so that the Cl⁻¹ concentration is 0.010 M, will PbCl₂ precipitate? (K_{sp} for PbCl₂ = 1.7 x 10⁻⁵)

10. Will a precipitate of Mg(OH)₂ form when 25.0 mL of 0.010 M NaOH is combined with 75.0 mL of a 0.10 M solution of magnesium chloride? ($K_{\rm SP}$ for Mg(OH)₂ = 5.6 x 10⁻¹²)

11. Solid gold(I) chloride, AuCl, dissolves when excess cyanide ion, CN-1, is added to give a water-soluble complex ion.

$$AuCl(s) + 2 CN^{-1}(aq) \Longrightarrow [Au(CN)_2]^{-1}(aq) + Cl^{-1}(aq)$$

- Show that this equation is the sum of two other equations, one for dissolving AuCl to give its ions ($K_{\rm sp} = 2.0 \times 10^{-13}$) and the other for the formation of the [Au(CN)₂]⁻¹ ion (using $K_{\rm form} = 2.0 \times 10^{38}$) from Au⁺¹ and CN⁻¹. Calculate $K_{\rm net}$ for the overall reaction.
- 12. Each pair of ions below is found together in aqueous solution. Using a table of solubility product constants, devise a way to separate these ions by precipitating one of them as an insoluble salt and leaving the other in solution.
 - a. Ba²⁺ and Na⁺
 - b. Ni²⁺ and Pb²⁺
- 13. A solution contains Ca²⁺ and Pb²⁺ ions, both at a concentration of 0.010 M. You wish to separate the two ions from each other as completely as possible by precipitating one but not the other using aqueous Na₂SO₄ as the precipitating agent.
 - a. Which will precipitate first as sodium sulfate is added, CaSO₄ or PbSO₄?
 - b. What will be the concentration of the first ion that precipitates (Ca²⁺ or Pb²⁺) when the second, more soluble salt begins to precipitate?
- 14. Explain why the solubility of Ag₃PO₄ can be greater in water than is calculated from the $K_{\rm sp}$ value of the salt.
- 15. Decide whether each of the following substances should be classified as a Lewis acid or a Lewis base.
 - a. H_2NOH in the reaction: $H_2NOH(aq) + HCl(aq) \rightarrow [H_3NOH][Cl](aq)$
 - b. $Fe^{2+}(aq)$
 - c. CH₃NH₂
- 16. A solution contains 0.10 M iodide ion, I-1, and 0.10 M carbonate ion, CO₃²-.
 - a. If solid Pb(NO₃)₂ is slowly added to the solution, which salt will precipitate first, PbI₂ or PbCO₃? (K_{sp} for PbI₂ = 9.8 x 10⁻⁹, K_{sp} for PbCO₃ = 7.4 x 10⁻¹⁴)
 - b. What will be the concentration of the first ion that precipitates (CO₃²⁻ or I⁻¹) when the second, more soluble salt begins to precipitate?
- 17. You place 2.234 g of solid $Ca(OH)_2$ in 1.00 L of pure water at 25 °C. The pH of the solution is found to be 12.68. Estimate the K_{sp} for $Ca(OH)_2$.
- 18. What is the solubility, in milligrams per milliliter, of BaF₂ (a) in pure water, and (b) in water containing 5.0 mg/mL KF? (K_{sp} for BaF₂ = 1.8 x 10⁻⁷)
- 19. Sodium carbonate is added to a solution in which the concentration of Ni²⁺ ion is 0.0024 M. Will precipitation of NiCO₃ ($K_{sp} = 1.4 \times 10^{-7}$) occur (a) when the concentration of the carbonate ion is 1.0 x 10⁻⁶ M or (b) when it is 100 times greater (or 1.0 x 10⁻⁴ M)? The equation: NiCO₃(s) \rightleftharpoons Ni²⁺(aq) + CO₃²⁻(aq)

Answers to the Practice Problem Set:

- 1. (a) and (b): soluble, (c) and (d): insoluble
- 2. Answers:
 - a. $AgCN(s) \rightleftharpoons Ag^{+}(aq) + CN^{-}(aq)$ $K_{sp} = [Ag^{+}][CN^{-}]$
 - b. NiCO₃(s) \rightleftharpoons Ni²⁺(aq) + CO₃²⁻(aq) $K_{sp} = [Ni^{2+}][CO_3^{2-}]$
 - c. AuBr₃(s) \iff Au³⁺(aq) + 3 Br⁻(aq) $K_{sp} = [Au^{3+}][Br^{-}]^3$
- 3. 3.6×10^{-6}
- 4. 1.4×10^{-15}
- 5. a. 2.4×10^{-4} b. 0.018
- 6. No; 0.20 mg dissolves
- 7. a. PbCl₂ b. HgS b. Fe(OH)₂
- 8. a. 2.2×10^{-6} b. 1.0×10^{-13}
- 9. $Q < K_{\rm sp}$ so no precipitate
- 10. $Q > K_{sp}$ so precipitate forms
- 11. $K_{\text{net}} = 4.0 \times 10^{25}$
- 12. a. SO₄²⁻ will precipitate Ba²⁺ b. Cl⁻¹ will precipitate Pb²⁺
- 13. a. $PbSO_4$ b. 5.1 x 10^{-6} M
- 14. PO₄³- acts as a base, increasing solubility upon formation of HPO₄²-
- 15. a. Lewis base b. Lewis acid c. Lewis base
- 16. a. PbCO₃ b. $[CO_3^{2-}] = 7.6 \times 10^{-8} \text{ mol/L}$
- 17. $K_{\rm sp} = 5.5 \times 10^{-5}$
- 18. a. 0.63 mg/mL b. $4.2 \times 10^{-3} \text{ mg/mL}$
- 19. a. no. b. yes