CH 223 Practice Problem Set #1

This is a **practice problem set** and not the actual graded problem set that you will turn in for credit.

Answers to each problem can be found at the end of this assignment.

Covering: Chapter Twelve and Chapter Guide One

Important Tables and/or Constants: **Table of Thermodynamic Values** (found at the end of CH 223 Problem Set #1 or here: http://mhchem.org/thermo)

- 1. Which substance has the higher entropy in each of the following pairs?
 - a. dry ice (solid CO₂) at -78 °C or CO₂(g) at 0 °C
 - b. liquid water at 25 °C or liquid water at 50 °C
 - c. pure alumina, Al₂O₃(s), or ruby (ruby is Al₂O₃(s) in which some of the Al³⁺ ions in the crystalline lattice are replaced with Cr³⁺ ions.)
 - d. one mole of $N_2(g)$ at 1 bar pressure or one mole of $N_2(g)$ at 10 bar pressure (both at 298 K)
- 2. By comparing the formulas for each pair of compounds, decide which is expected to have the higher entropy. Assume all are at the same temperature.
 - a. $O_2(g)$ or $CH_3OH(g)$ (two substances with the same molar mass)
 - b. HF(g), HCl(g), or HBr(g)
 - c. NH₄Cl(s) or NH₄Cl(aq)
 - d. $HNO_3(g)$, $HNO_3(l)$, or $HNO_3(aq)$
- 3. Use S° values to calculate the entropy change, ΔS° , for each of the following processes and comment on the sign of the change.
 - a. $LiOH(s) \rightarrow LiOH(aq)$ (*Note:* $S^{\circ}(LiOH(aq)) = 91.6$ J/molK)
 - b. $Na(g) \rightarrow Na(s)$
 - c. $Br_2(1) \rightarrow Br_2(g)$
 - d. $HCl(g) \rightarrow HCl(aq)$ (Note: $S^{\circ}(HCl(aq)) = 56.5 \text{ J/molK}$)
- 4. Calculate the standard molar entropy change of formation (ΔS_f°) for each of the following compounds from the elements at 25 °C.
 - a. HCl(g) b. Ca(OH)₂(s)
- 5. Calculate the standard molar entropy change for each of the following reactions at 25 °C. Comment on the sign of ΔS °.
 - a. $2 \text{ Al(s)} + 3 \text{ Cl}_2(g) \rightarrow 2 \text{ AlCl}_3(s)$
 - b. $2 \text{ CH}_3\text{OH}(1) + 3 \text{ O}_2(g) \rightarrow 2 \text{ CO}_2(g) + 4 \text{ H}_2\text{O}(g)$
- 6. Classify each of the reactions according to their spontaneity. Are these reactions enthalpy and/or entropy driven?
 - a. $Fe_2O_3(s) + 2 Al(s) \rightarrow 2 Fe(s) + Al_2O_3(s)$ $\Delta H^{\circ} = -851.5 \text{ kJ}$ $\Delta S^{\circ} = -375.2 \text{ J/K}$
 - b. $N_2(g) + 2 O_2(g) \rightarrow 2 NO_2(g)$ $\Delta H^{\circ} = 66.2 \text{ kJ}; \quad \Delta S^{\circ} = -121.6 \text{ J/K}$
- 7. Heating some metal carbonates, among them calcium carbonate, leads to their decomposition.

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

- a. Calculate ΔH° and ΔS° for the reaction.
- b. Is the reaction spontaneous at 298 K?
- c. Is the reaction predicted to be spontaneous at higher temperatures?

8. Using values of ΔH°_{f} and S° , calculate ΔG°_{rxn} for the following reaction. Is the reaction product-favored? Is the reaction enthalpy or entropy driven?

$$2 \text{ Pb(s)} + O_2(g) \rightarrow 2 \text{ PbO(s, yellow)}$$

- 9. Using values of ΔG°_{f} , calculate ΔG°_{rxn} for each of the following reactions. Which are product-favored?
 - a. $2 \text{ K(s)} + \text{Cl}_2(g) \rightarrow 2 \text{ KCl(s)}$
 - b. $2 \text{ CuO}(s) \rightarrow 2 \text{ Cu}(s) + \text{O}_2(g)$
 - c. $4 \text{ NH}_3(g) + 7 \text{ O}_2(g) \rightarrow 4 \text{ NO}_2(g) + 6 \text{ H}_2\text{O}(g)$
- 10. For the reaction: BaCO₃(s) \rightarrow BaO(s) + CO₂(g), ΔG°_{rxn} = +219.7 kJ. Using this value and a table of thermodynamic data, calculate the value of ΔG°_{f} for BaCO₃(s).
- 11. Estimate the temperature required to decompose HgS(s) into Hg(l) and S(g).

Answers to the Practice Problem Set:

- 1. a. $CO_2(g)$ b. 50° $H_2O(l)$ c. ruby d. $N_2(g)$ at 1 bar
- 2. a. $CH_3OH(g)$ b. HBr(g) c. $NH_4Cl(aq)$ d. $HNO_3(g)$
- 3. a. 48.8 J/K (entropy increase) b. -102.4 J/K (entropy decrease) c. 93.3 J/K (entropy increase) d. -130.4 J/K (entropy decrease) (*Instructor note:* your values of ΔS might be slightly different depending on the textbook used, etc., but they should be *close* to these values.)
- 4. a. 10.0 J/K b. -294.1 J/K (see note in answer #17, above)
- 5. a. -504.6 J/K (entropy increase) b. 313.6 J/K (entropy decrease) (see note in answer #17, above)
- 6. a. enthalpy driven, spontaneous at low temperatures b. non-spontaneous at all temperatures
- 7. a. $\Delta H^{\circ} = 191.59 \text{ kJ}$, $\Delta S^{\circ} = 141.9 \text{ J/K}$ b. no c. yes
- 8. $\Delta H^{\circ} = -434.64 \text{ kJ}$, $\Delta S^{\circ} = -197.4 \text{ J/K}$, $\Delta G^{\circ} = -375.77 \text{ kJ}$; product favored, enthalpy driven
- 9. a. $\Delta G^{\circ} = -817.0 \text{ kJ}$; product favored b. $\Delta G^{\circ} = 259.4 \text{ kJ}$; reactant favored c. $\Delta G^{\circ} = -1101.3 \text{ kJ}$; product favored
- 10. $\Delta G_f^{o}[BaCO_3(s)] = -1134.4 \text{ kJ/mol}$
- 11. 2089 K or greater