Concentrations, pH, Acids, Bases and Redox Answers at end

1. If 10.0 mL of 0.100 M HCl is titrated with 0.200 M NaOH , what volume of sodium hydroxide solution is required to neutralize the acid?

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \quad \rightarrow \quad \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

2. If 20.0 mL of 0.500 M KOH is titrated with $0.250 \mathrm{M} \mathrm{HNO}_{3}$, what volume of nitric acid is required to neutralize the base?

$$
\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{KOH}(\mathrm{aq}) \quad \rightarrow \quad \mathrm{KNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

3. If 25.0 mL of 0.100 M HCl is titrated with $0.150 \mathrm{MBa}(\mathrm{OH})_{2}$, what volume of barium hydroxide is required to neutralize the acid?

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq}) \quad \rightarrow \quad \mathrm{BaCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

4. If 25.0 mL of $0.100 \mathrm{MCa}(\mathrm{OH})_{2}$ is titrated with $0.200 M \mathrm{HNO}_{3}$, what volume of nitric acid is required to neutralize the base?

$$
2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \quad \rightarrow \quad 2 \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

5. If 20.0 mL of $0.200 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is titrated with 0.100 M NaOH , what volume of sodium hydroxide is required to neutralize the acid?

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \quad \rightarrow \quad \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

6. If 30.0 mL of $0.100 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ is titrated with $0.150 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, what volume of acetic acid is required to neutralize the base?

$$
2 \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \quad \rightarrow \quad \mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

7. If a 50.0 mL sample of ammonium hydroxide is titrated with 25.0 mL of 0.200 M nitric acid to a methyl red endpoint, what is the molarity of the base?

$$
\mathrm{NH}_{4} \mathrm{OH}(\mathrm{aq})+\mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \quad \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

8. If a 50.0 mL sample of ammonium hydroxide is titrated with 25.0 mL of 0.200 M sulfuric acid to a methyl red endpoint, what is the molarity of the base?

$$
2 \mathrm{NH}_{4} \mathrm{OH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \quad \rightarrow \quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

9. If a 25.0 mL sample of sulfuric acid is titrated with 50.0 mL of 0.200 M potassium hydroxide to a phenolphthalein endpoint, what is the molarity of the acid?

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{KOH}(\mathrm{aq}) \quad \rightarrow \quad \mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

10. What is the molarity of a hydrochloric acid solution if 20.00 mL of HCl is required to neutralize 0.424 g of sodium carbonate $(105.99 \mathrm{~g} / \mathrm{mol})$?

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

11. What is the molarity of a nitric acid solution if 25.00 mL of HNO_{3} is required to neutralize 0.424 g of sodium carbonate $(105.99 \mathrm{~g} / \mathrm{mol})$?

$$
2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

12. What is the molarity of a sulfuric acid solution if 30.00 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is required to neutralize 0.840 g of sodium hydrogen carbonate $(84.01 \mathrm{~g} / \mathrm{mol})$?
$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaHCO}_{3}(\mathrm{aq}) \rightarrow \quad \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{CO}_{2}(\mathrm{~g})$
13. What is the molarity of a hydrochloric acid solution if 25.00 mL of HCl is required to neutralize 0.500 g of calcium carbonate $(100.09 \mathrm{~g} / \mathrm{mol})$?

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

14. What is the molarity of a sodium hydroxide solution if 40.00 mL of NaOH is required to neutralize 0.900 g of oxalic acid, $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4},(90.04 \mathrm{~g} / \mathrm{mol})$?

$$
\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

15. What is the molarity of a sodium hydroxide solution if 35.00 mL of NaOH is required to neutralize 1.555 g of KHP , that is $\mathrm{KHC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}(204.23 \mathrm{~g} / \mathrm{mol})$?

$$
\mathrm{KHC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{KNaC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

16. If a 0.200 g sample of sodium hydroxide $(40.00 \mathrm{~g} / \mathrm{mol})$ is completely neutralized with $0.100 \mathrm{M}_{2} \mathrm{SO}_{4}$, what volume of sulfuric acid is required?

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \quad \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

17. If 0.900 g of oxalic acid, $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4},(90.04 \mathrm{~g} / \mathrm{mol})$ is completely neutralized with 0.300 M NaOH , what volume of sodium hydroxide is required?

$$
\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \quad \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

18. If 1.020 g of $\mathrm{KHC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}(204.23 \mathrm{~g} / \mathrm{mol})$ is completely neutralized with 0.200 M $\mathrm{Ba}(\mathrm{OH})_{2}$, what volume of barium hydroxide is required?

$$
2 \mathrm{KHC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}(\mathrm{aq})+\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{BaK}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

19. Glycine is an amino acid that can be abbreviated HGly. If 27.50 mL of 0.120 M NaOH neutralizes 0.248 g of HGly, what is the molar mass of the amino acid?

$$
\mathrm{HGly}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \quad \rightarrow \quad \mathrm{NaGly}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

20. Proline is an amino acid that can be abbreviated HPro. If 33.55 mL of 0.150 M NaOH neutralizes 0.579 g of HPro, what is the molar mass of the amino acid?

$$
\mathrm{HPro}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \quad \rightarrow \mathrm{NaPro}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

21. Lactic acid is found in sour milk and can be abbreviated HLac. If 47.50 mL of 0.275 $M \mathrm{NaOH}$ neutralizes 1.180 g of HLac, what is the molar mass of the acid?

$$
\mathrm{HLac}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \quad \rightarrow \quad \mathrm{NaLac}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

22. What is the pH of an aqueous solution if the $\left[\mathrm{H}^{+}\right]=5.5 \times 10^{-3} M$?
23. What is the pH of an aqueous solution if the $\left[\mathrm{H}^{+}\right]=4.2 \times 10^{-5} \mathrm{M}$?
24. What is the pH of an aqueous solution if the $\left[\mathrm{H}^{+}\right]=7 / 5 \times 10^{-8} M$?
25. What is the $\left[\mathrm{H}^{+}\right]$in an acid rain sample that has a $\mathrm{pH}=3.22$?
26. What is the $\left[\mathrm{H}^{+}\right]$in a blood sample that has a $\mathrm{pH}=7.30$?
27. What is the $\left[\mathrm{H}^{+}\right]$in a bleach sample that has a $\mathrm{pH}=9.55$?
28. What is the $\left[\mathrm{OH}^{-}\right]$in a seawater sample that has a $\mathrm{pH}=8.65$?
29. What is the $\left[\mathrm{OH}^{-}\right]$in an ammonia solution that has a $\mathrm{pH}=10.20$?
30. What is the $\left[\mathrm{OH}^{-}\right]$in an oven-cleaning solution that has a $\mathrm{pH}=12.35$?
31. What substance is oxidized in the following redox reaction?

$$
\mathrm{Zn}(\mathrm{~s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \quad \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s})
$$

32. What substance is reduced in the following redox reaction?

$$
\mathrm{Co}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \quad \rightarrow \mathrm{CoCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

33. What substance is oxidized in the following redox reaction?

$$
\mathrm{F}_{2}(\mathrm{~g})+2 \mathrm{Br}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{~F}^{-}(\mathrm{aq})+\mathrm{Br}_{2}(\mathrm{l})
$$

34. What substance is oxidized in the following redox reaction?

$$
\mathrm{HgCl}_{2}(\mathrm{aq})+\mathrm{Sn}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Sn}^{4+}(\mathrm{aq})+\mathrm{Hg}_{2} \mathrm{Cl}_{2}(\mathrm{~s})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

35. What substance is reduced in the following redox reaction?

$$
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{Fe}(\mathrm{~s})+\mathrm{NO}_{3}^{-}(\mathrm{aq}) \rightarrow \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{NO}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Acids, Bases, pH, and Redox - Answers

1. If 10.0 mL of 0.100 M HCl is titrated with 0.200 M NaOH , what volume of sodium hydroxide solution is required to neutralize the acid?

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \quad \rightarrow \quad \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2} \quad(0.100 \mathrm{M})(0.010 \mathrm{~L})=(0.200 \mathrm{M})\left(\mathrm{V}_{2}\right) \mathrm{V}_{2}=0.005 \mathrm{~L}=\mathbf{5} \mathbf{m L}$
2. If 20.0 mL of 0.500 M KOH is titrated with $0.250 \mathrm{M} \mathrm{HO}_{3}$, what volume of nitric acid is required to neutralize the base?

$$
\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{KOH}(\mathrm{aq}) \quad \rightarrow \quad \mathrm{KNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2} \quad(0.500 \mathrm{M})(0.020 \mathrm{~L})=(0.250 \mathrm{M})\left(\mathrm{V}_{2}\right) \mathrm{V}_{2}=0.040 \mathrm{~L}=\mathbf{4 0} \mathbf{m L}$
3. If 25.0 mL of 0.100 M HCl is titrated with $0.150 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$, what volume of barium hydroxide is required to neutralize the acid?

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq}) \quad \rightarrow \quad \mathrm{BaCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2} \quad(0.100 \mathrm{M})(0.025 \mathrm{~L})=(0.150 \mathrm{M})\left(\mathrm{V}_{2}\right) \mathrm{V}_{2}=0.0166 \mathrm{~L}=16.6 \mathrm{~mL} \mathrm{OH}^{-}$
But there are 2 OH 's per $\mathrm{Ba}(\mathrm{OH})_{2}$ so it takes half this volume $=\mathbf{8 . 3 3} \mathbf{~ m L}$ of $\mathbf{B a}(\mathbf{O H})_{2}$
4. If 25.0 mL of $0.100 \mathrm{MCa}(\mathrm{OH})_{2}$ is titrated with $0.200 \mathrm{M} \mathrm{HNO}_{3}$, what volume of nitric acid is required to neutralize the base?

$$
2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \quad \rightarrow \quad 2 \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2} \quad(0.100 \mathrm{M})(0.025 \mathrm{~L})=(0.200 \mathrm{M})\left(\mathrm{V}_{2}\right) \mathrm{V}_{2}=0.0125 \mathrm{~L}=12.5 \mathrm{mLH}+$
But it takes $2 \mathrm{HNO}_{3}$'s per $\mathrm{Ca}(\mathrm{OH})_{2}$ so it takes twice this volume $=\mathbf{2 5} \mathbf{~ m L}$ of $\mathbf{H N O}_{3}$
5. If 20.0 mL of $0.200 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is titrated with 0.100 M NaOH , what volume of sodium hydroxide is required to neutralize the acid?

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \quad \rightarrow \quad \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$0.200 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}=0.400 \mathrm{M} \mathrm{H}^{+}$
$\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2} \quad(0.40 \mathrm{M})(0.020 \mathrm{~L})=(0.100 \mathrm{M})\left(\mathrm{V}_{2}\right) \quad \mathrm{V}_{2}=0.080 \mathrm{~L}=\mathbf{8 0} \mathbf{~ m L ~ N a O H}$
6. If 30.0 mL of $0.100 \mathrm{MCa}(\mathrm{OH})_{2}$ is titrated with $0.150 M \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, what volume of acetic acid is required to neutralize the base?

$$
2 \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \quad \rightarrow \quad \mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$0.100 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}=0.200 \mathrm{M} \mathrm{OH}^{-}$
$\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2} \quad(0.200 \mathrm{M})(0.030 \mathrm{~L})=(0.150 \mathrm{M})\left(\mathrm{V}_{2}\right) \quad \mathrm{V}_{2}=0.040 \mathrm{~L}=\mathbf{4 0} \mathbf{m L ~ N a O H}$
7. If a 50.0 mL sample of ammonium hydroxide is titrated with 25.0 mL of 0.200 M nitric acid to a methyl red endpoint, what is the molarity of the base?

$$
\begin{aligned}
\mathrm{NH}_{4} \mathrm{OH}(\mathrm{aq})+\mathrm{HNO}_{3}(\mathrm{aq}) & \rightarrow \quad \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2} \quad(0.200 \mathrm{M})(0.025 \mathrm{~L}) & =\left(\mathrm{M}_{2}\right)(0.050 \mathrm{~L}) \quad \mathrm{M}_{2}=0.100 \mathrm{MNH}_{4} \mathrm{OH}
\end{aligned}
$$

8. If a 50.0 mL sample of ammonium hydroxide is titrated with 25.0 mL of 0.200 M sulfuric acid to a methyl red endpoint, what is the molarity of the base?

$$
2 \mathrm{NH}_{4} \mathrm{OH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \quad \rightarrow \quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$0.200 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}=0.400 \mathrm{M} \mathrm{H}^{+}$
$\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2} \quad(0.400 \mathrm{M})(0.025 \mathrm{~L})=\left(\mathrm{M}_{2}\right)(0.050 \mathrm{~L}) \quad \mathrm{M}_{2}=\mathbf{0 . 2 0 0} \mathbf{M ~ N H}_{4} \mathbf{O H}$
9. If a 25.0 mL sample of sulfuric acid is titrated with 50.0 mL of 0.200 M potassium hydroxide to a phenolphthalein endpoint, what is the molarity of the acid?

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{KOH}(\mathrm{aq}) \quad \rightarrow \quad \mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2} \quad(0.200 \mathrm{M})(0.050 \mathrm{~L})=\left(\mathrm{M}_{2}\right)(0.025 \mathrm{~L}) \mathrm{M}_{2}=0.400 \mathrm{M} \mathrm{H}^{+}$
But, there are 2 H 's per $\mathrm{H}_{2} \mathrm{SO}_{4}$ so $\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]=\mathbf{0 . 2 0 0 M}$
10. What is the molarity of a hydrochloric acid solution if 20.00 mL of HCl is required to neutralize 0.424 g of sodium carbonate $(105.99 \mathrm{~g} / \mathrm{mol})$?

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

$0.424 \mathrm{~g} / 105.99 \mathrm{~g} / \mathrm{mol}=0.0040 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}$
Each $\mathrm{Na}_{2} \mathrm{CO}_{3}$ requires 2 HCl so we need 0.0080 mol HCl
$\mathrm{MV}=$ moles $\quad(\mathrm{M})(0.020 \mathrm{~L})=0.0080$ mole $\mathrm{HCl} \quad \mathrm{M}=\mathbf{0 . 4 0} \mathbf{~ M ~ H C l}$
11. What is the molarity of a nitric acid solution if 25.00 mL of HNO_{3} is required to neutralize 0.424 g of sodium carbonate $(105.99 \mathrm{~g} / \mathrm{mol})$?

$$
2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

$0.424 \mathrm{~g} / 105.99 \mathrm{~g} / \mathrm{mol}=0.0040 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}$
Each $\mathrm{Na}_{2} \mathrm{CO}_{3}$ requires $2 \mathrm{HNO}_{3}$ so we need $0.0080 \mathrm{~mol}_{\mathrm{HNO}}^{3}$
$\mathrm{MV}=$ moles $\quad(\mathrm{M})(0.025 \mathrm{~L})=0.0080$ mole $\mathrm{HNO}_{3} \quad \mathrm{M}=\mathbf{0 . 3 2} \mathbf{M ~ H N O}_{3}$
12. What is the molarity of a sulfuric acid solution if 30.00 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is required to neutralize 0.840 g of sodium hydrogen carbonate ($84.01 \mathrm{~g} / \mathrm{mol}$)?
$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaHCO}_{3}(\mathrm{aq}) \rightarrow \quad \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{CO}_{2}(\mathrm{~g})$
$0.840 \mathrm{~g} / 84.01 \mathrm{~g} / \mathrm{mol}=0.010 \mathrm{~mol} \mathrm{NaHCO}_{3}$
It takes 2 NaHCO 3 per $\mathrm{H}_{2} \mathrm{SO}_{4}$ so you need $0.005 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$
$\mathrm{MV}=$ moles $\quad \mathrm{M}(0.030 \mathrm{~L})=0.005$ moles $\quad \mathrm{M}=\mathbf{0 . 1 6 7} \mathbf{M ~ H}_{\mathbf{2}} \mathbf{S O}_{4}$
13. What is the molarity of a hydrochloric acid solution if 25.00 mL of HCl is required to neutralize 0.500 g of calcium carbonate $(100.09 \mathrm{~g} / \mathrm{mol})$?

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

$0.500 \mathrm{~g} / 100.09 \mathrm{~g} / \mathrm{mol}=0.005 \mathrm{~mol} \mathrm{CaCO}_{3}$
Each mole of CaCO 3 requires 2 mol HCl so you need $0.005 \times 2=0.010 \mathrm{~mol} \mathrm{HCl}$
$\mathrm{MV}=$ moles $\quad \mathrm{M}(0.025 \mathrm{~L})=0.010 \mathrm{~mol} \quad \mathrm{M}=\mathbf{0 . 4 0} \mathbf{~ M ~ H C l}$
14. What is the molarity of a sodium hydroxide solution if 40.00 mL of NaOH is required to neutralize 0.900 g of oxalic acid, $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4},(90.04 \mathrm{~g} / \mathrm{mol})$?

$$
\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \quad \rightarrow \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq}) \quad+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$0.900 \mathrm{~g} / 90.04 \mathrm{~g} / \mathrm{mol}=0.010 \mathrm{~mol}$ Oxalic acid
It takes 2 mole NaOH for every mole of Oxalic acid
so you need $2 \times 0.010 \mathrm{~mol}=0.02 \mathrm{~mol} \mathrm{NaOH}$
$\mathrm{MV}=$ moles $\quad \mathrm{M}(0.040 \mathrm{~L})=0.020$ mole $\mathrm{NaOH} \quad \mathbf{M}=\mathbf{0 . 5 0} \mathbf{~ M ~ N a O H}$
15. What is the molarity of a sodium hydroxide solution if 35.00 mL of NaOH is required to neutralize 1.555 g of KHP , that is $\mathrm{KHC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}(204.23 \mathrm{~g} / \mathrm{mol})$?

$$
\mathrm{KHC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{KNaC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$1.555 \mathrm{~g} / 204.23 \mathrm{~g} / \mathrm{mol}=0.00761 \mathrm{~mol} \mathrm{KHP}$
1 mole KHP needs 1 mole of NaOH so, 0.00761 mole $\mathrm{KHP}=0.00761$ mole NaOH 0.00761
mole $\mathrm{NaOH} / 0.0351 \mathrm{~L}=\mathbf{0 . 2 1 7 5} \mathbf{~ M ~ N a O H}$
16. If a 0.200 g sample of sodium hydroxide $(40.00 \mathrm{~g} / \mathrm{mol})$ is completely neutralized with $0.100 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$, what volume of sulfuric acid is required?

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \quad \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$0.200 \mathrm{~g} \mathrm{NaOH} / 40 \mathrm{~g} / \mathrm{mol}=0.005 \mathrm{~mol} \mathrm{NaOH}$
1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ needs 2 mole NaOH so 0.005 mole NaOH needs 0.0025 mole $\mathrm{H}_{2} \mathrm{SO}_{4}$
$\mathrm{MV}=$ moles $\quad\left(0.100 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}\right)(\mathrm{V})=0.0025$ mole $\quad \mathrm{V}=0.0250 \mathrm{~L}=\mathbf{2 5} \mathbf{~ m L}$
17. If 0.900 g of oxalic acid, $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4},(90.04 \mathrm{~g} / \mathrm{mol})$ is completely neutralized with 0.300 M NaOH , what volume of sodium hydroxide is required? $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})$

$$
+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \quad \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$0.900 \mathrm{~g} / 90.04 \mathrm{~g} / \mathrm{mol}=0.010 \mathrm{~mol}$ Oxalic acid
It takes 2 mole NaOH for every mole of Oxalic acid
so you need $2 \times 0.010 \mathrm{~mol}=0.02 \mathrm{~mol} \mathrm{NaOH}$
$\mathrm{MV}=$ moles $\quad(0.300 \mathrm{M})(\mathrm{V})=0.020$ mole $\mathrm{NaOH} \quad \mathrm{V}=0.0666 \mathrm{~L}=\mathbf{6 6 . 6} \mathbf{~ m L}$
18. If 1.020 g of $\mathrm{KHC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}(204.23 \mathrm{~g} / \mathrm{mol})$ is completely neutralized with 0.200 M $\mathrm{Ba}(\mathrm{OH})_{2}$, what volume of barium hydroxide is required?

$$
2 \mathrm{KHC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}(\mathrm{aq})+\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \quad \mathrm{BaK}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$1.020 \mathrm{~g} / 204.23 \mathrm{~g} / \mathrm{mol}=0.0050 \mathrm{~mol}$ KHP
2 mole KHP needs 1 mole of $\mathrm{Ba}(\mathrm{OH})_{2}$ so, 0.0050 mole KHP needs 0.0025 mole $\mathrm{Ba}(\mathrm{OH})_{2}$

$$
\mathrm{MV}=\text { moles } \quad(0.200 \mathrm{M})(\mathrm{V})=0.0025 \text { mole Ba }(\mathrm{OH})_{2} \quad \mathrm{~V}=0.01250 \mathrm{~L}=\mathbf{1 2 . 5} \mathbf{~ m L}
$$

19. Glycine is an amino acid that can be abbreviated HGly. If 27.50 mL of 0.120 M NaOH neutralizes 0.248 g of HGly, what is the molar mass of the amino acid?

$$
\begin{aligned}
& \mathrm{HGly}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \quad \rightarrow \quad \mathrm{NaGly}(\mathrm{aq})+ \\
& \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{aligned}
$$

$\mathrm{MV}=$ moles $\quad(0.120 \mathrm{M})(0.02750 \mathrm{~L})=0.033$ mole $\mathrm{NaOH}=0.0033$ mole HGly
$0.248 \mathrm{~g} / 0.0033$ mole HGly $=75.12 \mathrm{~g} / \mathrm{mol} \mathrm{HGly}$
20. Proline is an amino acid that can be abbreviated HPro. If 33.55 mL of 0.150 M NaOH neutralizes 0.579 g of HPro, what is the molar mass of the amino acid?

$$
\mathrm{HPro}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \quad \rightarrow \mathrm{NaPro(aq)}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$\mathrm{MV}=$ moles $\quad(0.150 \mathrm{M})(0.03355 \mathrm{~L})=0.005033$ mole $\mathrm{NaOH}=0.005033$ mole HPro $0.579 \mathrm{~g} / 0.050033$ mole HPro $=\mathbf{1 1 5 . 0 5} \mathbf{g} / \mathbf{m o l}$ HPro
21. Lactic acid is found in sour milk and can be abbreviated HLac. If 47.50 mL of 0.275
$M \mathrm{NaOH}$ neutralizes 1.180 g of HLac, what is the molar mass of the acid?

$$
\mathrm{HLac}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \quad \rightarrow \quad \mathrm{NaLac}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(1)
$$

$\mathrm{MV}=$ moles $\quad(0.275 \mathrm{M})(0.0475 \mathrm{~L})=0.01306$ mole $\mathrm{NaOH}=0.01306$ mole HLac
$1.180 \mathrm{~g} / 0.01306$ mole HLac $=\mathbf{9 0 . 3 3} \mathbf{g} / \mathbf{m o l}$ HLac
22. What is the pH of an aqueous solution if the $\left[\mathrm{H}^{+}\right]=5.5 \times 10^{-3}$
$M ? \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \quad \mathrm{pH}=-\log \left[5.5 \times 10^{-3}\right]=\mathbf{2 . 2 6}$
23. What is the pH of an aqueous solution if the $\left[\mathrm{H}^{+}\right]=4.2 \times 10^{-5}$
$M ? \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \quad \mathrm{pH}=-\log \left[4.2 \times 10^{-5}\right]=4.38$
24. What is the pH of an aqueous solution if the $\left[\mathrm{H}^{+}\right]=7.5 \times 10^{-8}$
$M ? \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \quad \mathrm{pH}=-\log \left[7.5 \times 10^{-8}\right]=7.12$
25. What is the $\left[\mathrm{H}^{+}\right]$in a blood sample that has a $\mathrm{pH}=3.22$?
$[\mathrm{H}+]=10^{-\mathrm{pH}} \quad[\mathrm{H}+]=10^{-3.22} \quad[\mathrm{H}+]=\mathbf{6 . 0 3} \times 10^{-4} \mathbf{M}$
26. What is the $[\mathrm{H}+]$ in a blood sample that has a $\mathrm{pH}=7.30$?

$$
[\mathrm{H}+]=10^{-\mathrm{pH}} \quad[\mathrm{H}+]=10^{-7.30} \quad[\mathrm{H}+]=\mathbf{5 . 0 1} \mathbf{x 1 0} \mathbf{0}^{-\mathbf{8}} \mathbf{M}
$$

25. What is the $\left[\mathrm{H}^{+}\right]$in a bleach sample that has a $\mathrm{pH}=9.55$?

$$
[\mathrm{H}+]=10^{-\mathrm{pH}} \quad[\mathrm{H}+]=10^{-9.55} \quad[\mathrm{H}+]=\mathbf{2 . 8 2} \mathbf{x 1 0} \mathbf{1 0}^{-\mathbf{1 0}} \mathbf{M}
$$

26. What is the $\left[\mathrm{OH}^{-}\right]$in a seawater sample that has a $\mathrm{pH}=8.65$?

$$
\begin{aligned}
& {[\mathrm{H}+]=10^{-\mathrm{pH}} \quad[\mathrm{H}+]=10^{-8.65} \quad[\mathrm{H}+]=2.24 \times 10^{-9} \mathrm{M}} \\
& {[\mathrm{H}+][\mathrm{OH}-]=1 \times 10^{-14} \quad\left[2.24 \times 10^{-9} \mathrm{M}\right][\mathrm{OH}-]=1 \times 10^{-14} \quad[\mathrm{OH}-]=\mathbf{4 . 4 6 \times 1 0 ^ { - 9 }} \mathbf{~ M}}
\end{aligned}
$$

27. What is the $\left[\mathrm{OH}^{-}\right]$in an ammonia solution that has a $\mathrm{pH}=10.20$?

$$
\begin{aligned}
& {[\mathrm{H}+]=10^{-\mathrm{pH}} \quad[\mathrm{H}+]=10^{-10.20} \quad[\mathrm{H}+]=6.31 \times 10^{-11} \mathrm{M}} \\
& {[\mathrm{H}+][\mathrm{OH}-]=1 \times 10^{-14} \quad\left[6.31 \times 10^{-11} \mathrm{M}\right][\mathrm{OH}-]=1 \times 10^{-14} \quad[\mathrm{OH}-]=\mathbf{1 . 5 8} \times 10^{-4} \mathbf{M}}
\end{aligned}
$$

28. What is the $\left[\mathrm{OH}^{-}\right]$in an oven-cleaning solution that has a $\mathrm{pH}=12.35$?

$$
\begin{aligned}
& {[\mathrm{H}+]=10^{-\mathrm{pH}} \quad[\mathrm{H}+]=10^{-12.35} \quad[\mathrm{H}+]=4.47 \times 10^{-13} \mathrm{M}} \\
& {[\mathrm{H}+][\mathrm{OH}-]=1 \times 10^{-14} \quad\left[4.47 \times 10^{-13} \mathrm{M}\right][\mathrm{OH}-]=1 \times 10^{-14} \quad[\mathrm{OH}-]=\mathbf{0 . 0 2 2 4} \mathbf{~ M}}
\end{aligned}
$$

29. What substance is oxidized in the following redox reaction?

$$
\underline{Z n}(\mathrm{~s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \quad \rightarrow \quad \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s})
$$

30. What substance is reduced in the following redox

$$
\text { reaction? } \mathrm{Co}(\mathrm{~s})+2 \underline{\boldsymbol{H} C l}(\mathrm{aq}) \quad \rightarrow \quad \mathrm{CoCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

31. What substance is oxidized in the following redox reaction?

$$
\mathrm{F}_{2}(\mathrm{~g})+2 \underline{\boldsymbol{B r}^{-}}(\mathrm{aq}) \rightarrow 2 \mathrm{~F}^{-}(\mathrm{aq})+\mathrm{Br}_{2}(\mathrm{l})
$$

32. What substance is oxidized in the following redox reaction?

$$
\mathrm{HgCl}_{2}(\mathrm{aq})+\underline{\boldsymbol{S n}^{2+}(\mathrm{aq})} \rightarrow \mathrm{Sn}^{4+}(\mathrm{aq})+\mathrm{Hg}_{2} \mathrm{Cl}_{2}(\mathrm{~s})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

33. What substance is reduced in the following redox reaction?

$$
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{Fe}(\mathrm{~s})+\underline{N O}_{3}{ }^{-}(\mathrm{aq}) \rightarrow \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{NO}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

