Chemistry 223 Exam II Review

Chapters 15, 16 and 17

Chemistry 223
Professor Michael Russell
MAR

If the solubility of BaF_{2} is 3.6×10^{-3}, a reasonable value for K_{sp} for BaF_{2} is
A. 3.6×10^{-3}
B. 7.2×10^{-3}
C. 1.1×10^{-2}
D. 1.9×10^{-7}
E. 4.7×10^{-8}

Decide if a precipitate will form when mixing the indicated reagents (all concentrations are 1.0 $\mathrm{M})$.

$$
\mathrm{KCl}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow ?
$$

A. Yes
B. No
C. Who knows!

Which lead salt has the greatest molar solubility in water at $25^{\circ} \mathrm{C}$?
A. PbCO_{3}
$\mathrm{K}_{\text {sp }}=1.5 \times 10^{-13}$
B. PbS
C. PbSO_{4}
$\mathrm{K}_{\text {sp }}=8.4 \times 10^{-28}$
$\mathrm{K}_{\text {sp }}=1.8 \times 10^{-4}$

A solution contains $0.10 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{3}$ and $0.30 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$. Solid $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ is added slowly. Which precipitates first, CaSO_{3} or CaSO_{4} ?
A. CaSO_{3}
B. CaSO_{4}
C. 42
$\mathrm{K}_{\text {sp }}$ for $\mathrm{CaSO}_{3}=1.3 \times 10^{-8}$

$$
\mathrm{K}_{\mathrm{sp}} \text { for } \mathrm{CaSO}_{4}=2.4 \times 10^{-5}
$$

CaSO_{3} precipitates first as Ca^{2+} ions are added to a solution containing $0.10 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{3}$ and $0.30 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$. What is $\left[\mathrm{SO}_{3}{ }^{2-}\right]$ as the CaSO_{4} begins to precipitate?

$$
\mathrm{K}_{\mathrm{sp}}\left(\mathrm{CaSO}_{3}\right)=1.3 \times 10^{-8} \quad \mathrm{~K}_{\mathrm{sp}}\left(\mathrm{CaSO}_{4}\right)=2.4 \times 10^{-5}
$$

A. 0.10 M
B. 0.30 M
C. $1.6 \times 10^{-4} \mathrm{M}$
D. $5.4 \times 10^{-4} \mathrm{M}$
E. 42

What is the pH of a saturated solution of

 $\mathrm{Mg}(\mathrm{OH})_{2} ?\left(\mathrm{~K}_{\mathrm{sp}}\left(\mathrm{Mg}(\mathrm{OH})_{2}\right)=5.6 \times 10^{-12}\right)$A. 3.65
B. 8.37
C. 10.35
D. 0.15
E. 11.25

MAR

Which of the following shows the correct formation constant $\left(K_{f}\right)$ equation for $\mathrm{Cr}(\mathrm{CN})_{6}{ }^{3-}$?
A. $\mathrm{Cr}(\mathrm{CN})_{3}(\mathrm{~s})+3 \mathrm{CN}^{-1}(\mathrm{aq}) \rightleftarrows \mathrm{Cr}(\mathrm{CN})_{6}{ }^{3-}(\mathrm{aq})$
B. $\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{~s})+6 \mathrm{NaCN}(\mathrm{aq}) \rightleftarrows \mathrm{Cr}(\mathrm{CN})_{6}{ }^{3-}(\mathrm{aq})+$ $3 \mathrm{NaNO}_{3}(\mathrm{aq})+3 \mathrm{Na}^{+}(\mathrm{aq})$
C. $\mathrm{Cr}(\mathrm{CN})_{8^{3-}}(\mathrm{s}) \rightleftarrows \mathrm{Cr}^{3+}(\mathrm{aq})+6 \mathrm{CN}^{-1}(\mathrm{aq})$
D. $\mathrm{Cr}(\mathrm{CN}) 6^{3-}(\mathrm{aq}) \rightleftarrows \mathrm{Cr}^{3+}(\mathrm{aq})+6 \mathrm{CN}^{-1}(\mathrm{aq})$
E. $\mathrm{Cr}^{3+}(\mathrm{aq})+6 \mathrm{CN}^{-1}(\mathrm{aq}) \rightleftarrows \mathrm{Cr}(\mathrm{CN}) 6^{3-}(\mathrm{aq})$

MAR

MAR

Calculate $\Delta \mathrm{G}_{\mathrm{rx}}{ }^{\circ}$ for the following reaction:
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
${ }^{*} \Delta \mathrm{G}_{\mathrm{f}}{ }^{\circ}\left[\mathrm{CO}_{2}(\mathrm{~g})\right]=-394.4 \mathrm{~kJ} / \mathrm{mol}$

* $\Delta \mathrm{G}_{\mathrm{f}}{ }^{\circ}\left[\mathrm{CH}_{4}(\mathrm{~g})\right]=-50.8 \mathrm{~kJ} / \mathrm{mol}$
${ }^{*} \Delta \mathrm{G}_{\mathrm{f}}{ }^{\circ}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right]=-228.6 \mathrm{~kJ} / \mathrm{mol}$
A. $572.2 \mathrm{~kJ} / \mathrm{mol} \cdot \mathrm{rxn}$
B. $-673.7 \mathrm{~kJ} / \mathrm{mol} \cdot \mathrm{rxn}$
C. $-572.2 \mathrm{~kJ} / \mathrm{mol} \cdot \mathrm{rxn}$
D. $-436.4 \mathrm{~kJ} / \mathrm{mol} \cdot \mathrm{rxn}$
E. $-800.8 \mathrm{~kJ} / \mathrm{mol} \cdot \mathrm{rxn}$

A solution has $\left[\mathrm{Pb}^{2+}\right]=0.0012 \mathrm{M}$ and $\left[\mathrm{Cl}^{-}\right]$
$=0.010 \mathrm{M}$. Will PbCl_{2} precipitate?
$\mathrm{K}_{\text {sp }}\left(\mathrm{PbCl}_{2}\right)=1.7 \times 10-5$
A. Yes, PbCl_{2} precipitates
B. No, PbCl_{2} does NOT precipitate

Calculate the standard entropy change for the
following reaction:

$$
\mathrm{CCl}_{4}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{Cl}_{2}(\mathrm{~g})
$$

* $\mathrm{S}^{\circ}\left[\mathrm{CCl}_{4}(\mathrm{I})\right]=214.39 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$
A. $-17.36 \mathrm{~J} / \mathrm{K}$
${ }^{*} \mathrm{~S}^{\circ}\left[\mathrm{CO}_{2}(\mathrm{~g})\right]=213.74 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$
B. $+17.36 \mathrm{~J} / \mathrm{K}$
* $\mathrm{S}^{\circ}\left[\mathrm{O}_{2}(\mathrm{~g})\right]=205.07 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$
C. $+240.44 \mathrm{~J} / \mathrm{K}$
* $\mathrm{S}^{\circ}\left[\mathrm{Cl}_{2}(\mathrm{~g})\right]=223.08 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$
D. $-25.78 \mathrm{~J} / \mathrm{K}$
E. 42

Given the following information, calculate ΔG° for the reaction below at $25^{\circ} \mathrm{C}$:

$\mathbf{M g}(\mathbf{s})+\mathbf{1} / \mathbf{2} \mathbf{O}_{\mathbf{2}}(\mathbf{g}) \rightarrow \mathbf{M g O}(\mathbf{s})$	A. $664.5 \mathrm{~kJ} / \mathrm{mol} \cdot \mathrm{rxn}$
$\Delta \mathrm{H}^{\circ}=-601.24 \mathrm{~kJ} / \mathrm{mol} \cdot \mathrm{rxn}$	B. $-568.9 \mathrm{~kJ} / \mathrm{mol} \cdot \mathrm{rxn}$
$\Delta \mathrm{S}^{\circ}=-108.36 \mathrm{~J} / \mathrm{K} \cdot \mathrm{rxn}$	C. $31700 \mathrm{~kJ} / \mathrm{mol} \cdot \mathrm{rxn}$
	D. $-528.3 \mathrm{~kJ} / \mathrm{mol} \cdot \mathrm{rxn}$
	E. 42

A reaction has a $\Delta \mathrm{H}^{\circ}$ which is positive and a $\Delta \mathrm{S}^{\circ}$ which is positive. What can be said about the reaction spontaneity at different temperatures?
A. product favored at all temperatures
B. product favored only at high temperature
C. product favored only at low temperature
D. not product favored at any temperature

Calculate $\Delta \mathrm{G}^{\circ}$ at $25^{\circ} \mathrm{C}$ for: $\mathbf{2} \mathbf{H}_{\mathbf{2}} \mathrm{O}_{\mathbf{2}}(\mathrm{I}) \rightarrow \mathbf{2} \mathbf{H}_{\mathbf{2}} \mathbf{O}(\mathrm{I})+\mathbf{O}_{\mathbf{2}}(\mathrm{g})$

	$\Delta \mathbf{H}^{\circ}(\mathbf{k J} / \mathrm{mol})$	$\mathbf{S}^{\circ}(\mathbf{J} / \mathbf{K} \cdot \mathrm{mol})$
$\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l})$	-187.8	109.6
$\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$	-285.8	69.9
$\mathrm{O}_{2}(\mathrm{~g})$	----	205.1
$\mathrm{A}-.157.9 \mathrm{~kJ} / \mathrm{mol} \cdot \mathrm{rxn}$		
$\mathrm{B} .-192.3 \mathrm{~kJ} / \mathrm{mol} \cdot \mathrm{rxn}$		
$\mathrm{C} .-37700 \mathrm{~kJ} / \mathrm{mol} \cdot \mathrm{rxn}$		
D. $-233.5 \mathrm{~kJ} / \mathrm{mol} \cdot \mathrm{rxn}$		
E. 42		

MAR

A reaction has $\Delta \mathrm{H}=-96.0 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta \mathrm{S}=-12.6 \mathrm{~J} /$
$\mathrm{K} \cdot \mathrm{mol}$. If the temperature is increased slowly, at what temperature will this reaction become nonspontaneous?
A. It will never be
spontaneous
B. $7162{ }^{\circ} \mathrm{C}$
C. 762 K
D. 7620 K
E. -57.6 K

MAR

Balance the following reaction ($\mathrm{pH}=8.37$):
$\mathrm{MnO}_{4}{ }^{-}+\mathrm{I}^{-} \rightarrow \mathrm{MnO}_{2}+\mathrm{I}_{2}$
A. $\mathrm{MnO}_{4}^{-}+2 \mathrm{I}^{-} \rightarrow \mathrm{MnO}_{2}+\mathrm{I}_{2}+\mathrm{O}_{2^{2-}}$
B. $8 \mathrm{H}^{+}+2 \mathrm{MnO}_{4}^{-}+6 \mathrm{I}^{-} \rightarrow 2 \mathrm{MnO}_{2}+3 \mathrm{I}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
C. $8 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{MnO}_{4}^{-}+12 \mathrm{I}^{-} \rightarrow 4 \mathrm{MnO}_{2}+6 \mathrm{I}_{2}+16 \mathrm{OH}^{-}$
D. $4 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{MnO}_{4}^{-}+6 \mathrm{I}^{-} \rightarrow 2 \mathrm{MnO}_{2}+3 \mathrm{I}_{2}+8 \mathrm{OH}^{-}$

What is the strongest reducing agent in the list?

Half-Reaction	$E^{\circ}(V)$
$\mathrm{Ce}^{4+}(\mathrm{aq})+\mathrm{e}-\rightarrow \mathrm{Ce}^{3+}(\mathrm{aq})$	+1.61
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}-\rightarrow \mathrm{Ag}(\mathrm{s})$	+0.80
$\mathrm{Hg}_{2}{ }^{2+}(\mathrm{aq})+2 \mathrm{e}-\rightarrow 2 \mathrm{Hg}(\ell)$	+0.79
$\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}-\rightarrow \mathrm{Sn}(\mathrm{s})$	-0.14
$\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}-\rightarrow \mathrm{Ni}(\mathrm{s})$	-0.25
$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}-\rightarrow \mathrm{Al}(\mathrm{s})$	-1.66

A. Ce^{4+}
B. Al^{3+}
C. Sn
D. AI
E. Jq
Al^{3+}

Barium sulfite is poorly soluble in water with a $\mathrm{K}_{\text {sp }}$ value of 8.0×10^{-7}. What is $\Delta \mathrm{G}^{\circ}$ at $25^{\circ} \mathrm{C}$?
A. $15.1 \mathrm{~kJ} / \mathrm{mol} \cdot \mathrm{rxn}$
B. $34.8 \mathrm{~kJ} / \mathrm{mol} \cdot \mathrm{rxn}$
C. $-34.8 \mathrm{~kJ} / \mathrm{mol} \cdot \mathrm{rxn}$
D. $343 \mathrm{~kJ} / \mathrm{mol} \cdot \mathrm{rxn}$
E. 42

A. Yes
B. No
C. Only if it feels
like it
$+0.80$ -0.14

A voltaic cell is created using the information below to be used in Alaska where the average temperature is $5.00^{\circ} \mathrm{C}$. Calculate the expected cell potential under these conditions.
$\mathrm{Al}(\mathrm{s})\left|\mathrm{Al}^{3+}(\mathrm{aq}, 0.0010 \mathrm{M})\right|\left|\mathrm{Ni}^{2+}(\mathrm{aq}, 0.50 \mathrm{M})\right| \mathrm{Ni}(\mathrm{s})$
$\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e} \rightarrow \mathrm{Ni}(\mathrm{s}) \quad-0.25 \mathrm{~V}$
$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{s})$
$-1.66 \mathrm{~V}$
A. 1.46 V
B. 1.31 V
C. 1.17 V
D. 0.51 V
E. -1.91 V

End of

Review good luck with your studying!

Need more practice?

- Practice Problem Sets (online)
- Concept Guides (Companion and online)
- Chapter Guides (online)
- End of Chapter Problems in Textbook (every other question has answer at end)
Good luck with your studying!

How long must a 2.00 amp current flow through a gold solution to convert 0.0100 mol of Au^{3+} (aq) into $\mathrm{Au}(\mathrm{s})$?
A. 483 s
B. $4.83 \times 10^{4} \mathrm{~s}$
C. 965 s
D. 1450 s
E. 1 zillion s

Determine the equilibrium constant for the following reaction at $25^{\circ} \mathrm{C}$:
$\mathrm{Cl}_{2}(\mathrm{aq})+2 \mathrm{l}(\mathrm{aq}) \rightarrow 2 \mathrm{Cl}-(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq}) \quad \mathrm{E}^{\circ}=+0.825 \mathrm{~V}$
A. 1.31×10^{-28}
B. 8.74×10^{13}
C. 8.03×10^{27}
D. 0.217
E. -1.16×10^{5}

