Chemistry 223 Exam I Review
Chapters 13 and 14 ("Part I \& II")

Chemistry 223

Professor Michael Russell MAR

Given the following two equilibria:
$\mathrm{NiCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{Ni}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}) \quad \mathrm{K}_{1}=6.6 \times 10^{-9}$
$\mathrm{HCO}_{3}-(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \quad \mathrm{K}_{2}=4.8 \times 10^{-11}$
calculate the equilibrium constant for the following reaction:
$\mathrm{NiCO}_{3}(\mathrm{~s})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{Ni}^{2+}(\mathrm{aq})+\mathrm{HCO}_{3}-(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
A. 7.3×10^{-3}
B. 3.2×10^{-19}
C. 140
D. 1.8×10^{-9}
E. 1100

We place 0.010 mol of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ in a 2.0 L flask at 200
${ }^{\circ} \mathrm{C}$. After reaching equilibrium, $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=0.0038 \mathrm{M}$.
Calculate K_{c} for the following reaction:

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

A. 1600
B. 1.5×10^{-3}
C. 6.1×10^{-4}
D. 8.8×10^{-6}
E. -3.1×10^{-3}

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g}), \mathrm{K}_{\mathrm{c}}=54.3
$$

Initially, $\left[\mathrm{H}_{2}\right]=0.00623 \mathrm{M},\left[\mathrm{I}_{2}\right]=0.00414 \mathrm{M}$, and $[\mathrm{HI}]=$ 0.0424 M . Find the equilibrium concentrations.
A. $\left[\mathrm{H}_{2}\right]=0.00201 \mathrm{M},\left[\mathrm{I}_{2}\right]=0.00112 \mathrm{M},[\mathrm{HI}]=0.0643 \mathrm{M}$
B. $\left[\mathrm{H}_{2}\right]=0.00222 \mathrm{M},\left[\mathrm{I}_{2}\right]=0.00168 \mathrm{M},[\mathrm{HI}]=0.0112 \mathrm{M}$
C. $\left[\mathrm{H}_{2}\right]=0.00917 \mathrm{M},\left[\mathrm{I}_{2}\right]=0.00667 \mathrm{M},[\mathrm{HI}]=0.0212 \mathrm{M}$
D. $\left[\mathrm{H}_{2}\right]=0.00676 \mathrm{M},\left[\mathrm{I}_{2}\right]=0.00467 \mathrm{M},[\mathrm{HI}]=0.0414 \mathrm{M}$
E. $\left[\mathrm{H}_{2}\right]=0.00623 \mathrm{M},\left[\mathrm{I}_{2}\right]=0.00414 \mathrm{M},[\mathrm{HI}]=0.0424 \mathrm{M}$

You add 0.535 g of $\mathrm{NaOH}\left(\mathrm{MM}=40.0 \mathrm{~g} \mathrm{~mol}^{-1}\right)$ to 100.0 mL of water at $25^{\circ} \mathrm{C}$. What is $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in this solution?
A. 0.134 M
B. $7.48 \times 10^{-14} \mathrm{M}$
C. $1.34 \times 10^{13} \mathrm{M}$
D. $6.87 \times 10^{-12} \mathrm{M}$

Considering only $\mathrm{H}_{2} \mathrm{~S}\left(\mathrm{~K}_{\mathrm{a}}=1 \times 10^{-7}\right)$ and $\mathrm{HCN}\left(\mathrm{K}_{\mathrm{a}}=4 \times 10^{-10}\right)$, predict in which direction the following equilibrium lies: $\mathrm{HCN}(\mathrm{aq})+\mathrm{HS}-(\mathrm{aq}) \rightleftharpoons \mathrm{CN}-(\mathrm{aq})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{aq})$
A. equilibrium lies to the left
B. equilibrium lies to the right
C. equilibrium is perfectly balanced left and right
D. cannot be determined

What is $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in a 0.10 M solution of HCN at $25^{\circ} \mathrm{C}$? (K_{a} for $\mathrm{HCN}=4.0 \times 10^{-10}$)
A. $1.6 \times 10^{-9} \mathrm{M}$
B. $6.3 \times 10^{-6} \mathrm{M}$
C. $2.0 \times 10^{-5} \mathrm{M}$
D. $4.0 \times 10^{-11} \mathrm{M}$
E. 0.10 M

In a 0.15 M solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$, what are $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$, $\left[\mathrm{OH}^{-}\right]$ and the pH ? K_{b} for $\mathrm{CO}_{3}{ }^{2-}$ is 2.1×10^{-4}.
A.

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	$\left[\mathrm{OH}^{-}\right]$	$\mathbf{p H}$
5.6×10^{-3}	1.8×10^{-12}	5.61
1.8×10^{-12}	5.6×10^{-3}	11.75
5.6×10^{-3}	1.8×10^{-12}	11.75
1.8×10^{-12}	5.6×10^{-3}	5.61

Classify the following as Lewis acids or bases.

$$
\mathrm{BH}_{3}, \mathrm{NH}_{3}, \mathrm{Cl}^{-1}, \mathrm{Al}^{3+}, \mathrm{Cr}^{3+}
$$

A. acid, base, base, acid, acid
B. base, base, base, acid, acid
C. base, acid, acid, base, base
D. acid, base, acid, base, base
E. Public Enemy is \#1!

Place the following acids in order of increasing acid strength.
(a) Anilinium ion, $\mathrm{pK}_{\mathrm{a}}=4.60$
(b) Benzilic acid, $\mathrm{pK}_{\mathrm{a}}=3.09$
(c) Chloroacetic acid, $\mathrm{pK}_{\mathrm{a}}=2.98$
(d) Dibromophenol, $\mathrm{pK}_{\mathrm{a}}=8.06$
A. a, b, c, d
B. d, c, b, a
C. c, b, a, d
D. d, a, b, c
E. a, c, d, c

You have a solution of $\mathrm{NH}_{4} \mathrm{Cl}$. What effect will addition of NH_{3} have on the pH of the solution?
A. increase pH
B. no effect
C. decrease pH
D. cannot tell from information given

You have a solution of $\mathrm{NH}_{4} \mathrm{Cl}$. What effect will addition of NaCl have on the pH of the solution?
A. increase pH
B. no effect
C. decrease pH
D. cannot tell from information given

Which choice would be an ideal buffer solution?
A. 0.20 M HCN and 0.10 M KCN
B. 0.20 M HCl and 0.10 M KOH
C. $0.20 \mathrm{M} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ and $0.10 \mathrm{M} \mathrm{HCO}_{2} \mathrm{H}$
D. 0.10 HCl and 0.010 M KCl
E. $0.10 \mathrm{M} \mathrm{CH}_{3} \mathrm{OH}$ and 0.10 M NaOH

MAR

What is the pH of a buffer that is composed of $0.20 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$ and $0.20 \mathrm{M} \mathrm{NH}_{3}$? $\left(\mathrm{K}_{\mathrm{a}}\right.$ for $\mathrm{NH}_{4}{ }^{+}=$ 5.6×10^{-10})
A. 4.85
B. 5.65
C. 7.00
D. 9.25
E. 10.05

MAR

What volume of 0.10 M sodium acetate must be added to 100 . mL of 0.10 M acetic acid ($\mathrm{K}_{\mathrm{a}}=1.8$ $\times 10^{-5}$) to have a pH of 4.00 ?
A. 100. mL
B. 50 . mL
C. 36 mL
D. 18 mL
E. 9.0 mL

What is the pH of a buffer that is composed of $0.20 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$ and $0.50 \mathrm{M} \mathrm{NH}_{3}$? (K_{a} for $\mathrm{NH}_{4}{ }^{+}=$ 5.6×10^{-10})
A. 4.75
B. 5.65
C. 7.00
D. 9.25
E. 9.65

MAR

What type of titration does the graph below represent?
$\left.\begin{array}{ll|l|}\text { A. strong acid + strong base } & \\ \text { B. strong base + strong acid }\end{array}\right)$

You mix 15.0 mL of 0.400 M HCl with 15.0 mL of $0.400 \mathrm{M} \mathrm{NH}_{3}$. What is the pH of the resulting solution? $\left(\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}\right)$
A. 11.43
B. 9.26
C. 7.00
D.5.54
E. 4.98

MAR

What is the pH of the solution when 50 mL of 0.10 M HCl and $100 . \mathrm{mL}$ of 0.10 M NaCN are mixed? $\mathrm{K}_{\mathrm{a}}(\mathrm{HCN})=4.0 \times 10^{-10}$
A. 8.65
B. 8.80
C. 5.20
D. 5.35
E. 9.40
0.40 g of $\mathrm{NaOH}(\mathrm{MM}=40 \mathrm{~g} / \mathrm{mol})$ are mixed with 100 mL of 0.10 M acetic acid. What is the pH of the resulting solution? $\left(\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}\right)$
A. 1.00
B. 2.87
C. 7.00
D. 8.87
E. 13.00

MAR

Add $40 . \mathrm{mL}$ of 0.50 M NaOH to 50.0 mL of 1.00 $\mathrm{M} \mathrm{NH} 4{ }_{4} \mathrm{Cl}$. What is the pH of the resulting solution? $\mathrm{K}_{\mathrm{b}}\left(\mathrm{NH}_{3}\right)=1.8 \times 10^{-5}$
A. 4.56
B. 4.74
C. 7.00
D. 9.08
E. 10.70

> End of
> Review good luck with your studying!

Need more practice?

- Practice Problem Sets (online)
- Concept Guides (Companion and online)
- Chapter Guides (online)
- End of Chapter Problems in Textbook (every other question has answer at end)
Good luck with your studying!
MAR

