CH 223 Spring 2024: Problem Set \#3 Instructions

Step One (all sections):

- Learn the material for Problem Set \#3 by reading Chapter 14 of the textbook and/or by watching the videos found on our website (https://mhchem.org/223)
- Try the problems for Problem Set \#3 found on the next pages on your own first. Use separate paper and write out your answers, showing all of your work. If you write the answers on the problem set itself, you will receive fewer points. Include your name on your problem set!

Step Two:
Section 01 and H1: We will go over Problem Set \#3 during recitation. Self correct all problems of your problem set before turning it in at the end of recitation.

- Section 01: due Monday, April 22 at 1:10 PM
- Section H1: due Wednesday, April 24 at 1:10 PM

Section W1: Watch the recitation video for Problem Set \#3:
http://mhchem.org/v/p.htm

- Self correct all of the problems while viewing the video. Mark correct problems with a star (or other similar mark), and correct all incorrect problems (show the correct answer and the steps required to achieve it.)
- Submit Problem Set \#3 via email (mike.russell@mhcc.edu) as a single PDF file (use CamScanner (https://camscanner.com), CombinePDF (https:// combinepdf.com), etc.) by 11:59 PM Wednesday, April 24.

If you have any questions regarding this assignment, please email (mike.russell@mhcc.edu) the instructor! Good luck on this assignment!

CH 223 Problem Set \#3

* Complete problem set on separate pieces of paper showing all work, circling final answers, etc.
* Self correct your work before turning it in to the instructor.

Covering: Chapter Fourteen Part II and Chapter Guide Three

Important Tables and/or Constants: "Titration Guide" (Handout), "Buffers and Henderson-Hasselbalch
Guide" (Handout) and the Table of Acids and Bases for CH 223 (after this problem set), $\mathbf{K}_{\mathbf{w}}=\mathbf{1 . 0 0} \mathbf{x 1 0 - 1 4}$ at $25^{\circ} \mathrm{C}$

1. Calculate the hydronium ion concentration and the pH when 50.0 mL of $0.40 \mathrm{M} \mathrm{NH}_{3}$ is mixed with 50.0 mL of 0.40 M HCl . Use a table to look up relevant K values. Hint: Determine the region this problem would use from the WB + SA Titration Calculations lab.
2. What is the pH of the solution that results from adding 25.0 mL of 0.12 M HCl to 25.0 mL of $0.43 \mathrm{M} \mathrm{NH}_{3}$? Use a table to look up relevant K values.
3. For each of the following, decide whether the pH is less than, equal to, or greater than 7.
a. 150 mL of $0.20 \mathrm{M} \mathrm{HNO}_{3}$ is mixed with 75 mL of 0.40 M LiOH
b. equal volumes of 0.10 M acetic acid, $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$, and 0.10 M KOH are mixed
c. 25 mL of $0.015 \mathrm{M} \mathrm{NH}_{3}$ is mixed with 12 mL of 0.015 M HCl
d. 25 mL of $0.45 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is mixed with 25 mL of 0.90 M NaOH
4. Does the pH of the solution increase, decrease or stay the same when you:
a. Add solid sodium oxalate, $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$, to 50.0 mL of 0.015 M oxalic acid, $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$?
b. Add solid ammonium chloride to 75 mL of 0.016 M HCl ?
c. Add 20.0 g of NaCl to 1.0 L of 0.10 M sodium acetate, $\mathrm{NaCH}_{3} \mathrm{CO}_{2}$?
d. Add 10.3 g of FeCl_{3} to 1.0 L of pure water?
5. Which of the following combinations would be the best choice to buffer the pH of a solution at approximately 7? Use a table to look up relevant K values.
a. $\mathrm{H}_{3} \mathrm{PO}_{4}$ and $\mathrm{NaH}_{2} \mathrm{PO}_{4}$
b. $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}$
c. $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ and $\mathrm{Na}_{3} \mathrm{PO}_{4}$
6. What is the pH of 100 mL of 0.15 M acetic acid to which 1.56 g of sodium acetate, $\mathrm{NaCH}_{3} \mathrm{CO}_{2}$, has been added? Use a table to look up relevant K values.
7. Lactic acid, $\mathrm{CH}_{3} \mathrm{CHOHCO}_{2} \mathrm{H}$, is found in sour milk, in sauerkraut, and in muscles after activity. K_{a} for lactic acid $=1.4 \times 10^{-4}$.
a. If 2.75 g of $\mathrm{NaCH}_{3} \mathrm{CHOHCO}_{2}$, sodium lactate, is added to $5.00 \times 10^{2} \mathrm{~mL}$ of 0.100 M lactic acid, what is the pH of the resulting buffer solution?
b. Will the pH be lower or higher than the pH of the pure lactic acid solution?
8. Calculate the pH of a solution that has an ammonium chloride concentration of 0.050 M and an ammonia concentration of 0.045 M . Use a table to look up relevant K values.
9. What mass of ammonium chloride, $\mathrm{NH}_{4} \mathrm{Cl}$, must be added to exactly $5.00 \times 10^{2} \mathrm{~mL}$ of 0.10 $\mathrm{M} \mathrm{NH}_{3}$ to give a solution with a pH of 9.00 ? Use a table to look up relevant K values.
10. A buffer solution is composed of 1.360 g of $\mathrm{KH}_{2} \mathrm{PO}_{4}$ and 5.677 g of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$. Use a table to look up relevant K values.
a. What is the pH of the buffer solution?
b. What mass of $\mathrm{KH}_{2} \mathrm{PO}_{4}$ must be added to decrease the buffer solution pH by 0.5 units?

Problem Set \#3 continues on the next page
11. You dissolve 0.425 g of NaOH in 2.00 L of a buffer solution that has $\left[\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right]=\left[\mathrm{HPO}_{4}{ }^{2-}\right]=$ 0.132 M . What is the pH of the solution before adding the NaOH ? After adding the NaOH ? Use a table to look up relevant K values.
12. What will be the pH change when 20.0 mL of 0.100 M NaOH is added to 80.0 mL of a buffer solution consisting of $0.169 \mathrm{M} \mathrm{NH}_{3}$ and $0.183 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$? Use a table to look up relevant K values.
13. Assume you dissolve 0.235 g of the weak acid benzoic acid, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}$, in enough water to make $1.00 \times 10^{2} \mathrm{~mL}$ of solution and then titrate the solution with 0.108 M NaOH . Use a table to look up relevant K values.

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}(\mathrm{aq})+\mathrm{OH}^{-1}(\mathrm{aq}) \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}^{-1}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)
$$

a. What is the pH of the original benzoic acid solution?
b. What are the concentrations of the following ions at the equivalence point? Na^{+}, $\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{OH}^{-}$, and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}^{-}$? What is the pH at the equivalence point?
14. A solution of the weak base aniline, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}, K_{\mathrm{b}}=4.0 \times 10^{-10}$, in 25.0 mL of water requires 25.67 mL of 0.175 M HCl to reach the equivalence point.

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}+(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)
$$

a. What was the concentration of the aniline in the original solution?
b. What are the concentrations of $\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{OH}^{-}$and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$at the equivalence point? What is the pH of the solution at the equivalence point?

Table of Acids and Bases for CH 223

[^0]
[^0]: *The values of K_{a} for HS^{-}and K_{b} for S^{2-} are estimates.

