Sample Chemistry Question (Ch. 15, 16, 17) - CH 223

Questions for Chapters Seventeen Part II, Nineteen and Twenty:

1. What is the concentration of F^{-}in a saturated solution of BaF_{2} if $\mathrm{K}_{\mathrm{sp}}=1.7^{*} 10^{-6}$?
a. $7.5^{*} 10^{-3} \mathrm{M}$
b. $8.2 * 10^{-4} \mathrm{M}$
c. $1.5^{*} 10^{-2} \mathrm{M}$
d. $4.3 * 10^{-7} \mathrm{M}$
e. $1.5 * 10^{-6} \mathrm{M}$
2. For $\mathrm{BaSO}_{4}, \mathrm{~K}_{\text {sp }}=1.1 * 10^{-10}$. What is the molar solubility of BaSO_{4} in a solution which is $0.018 \mathrm{M} \mathrm{in}_{2} \mathrm{Na}_{2} \mathrm{SO}_{4}$?
a. 0.018 M
b. $7.8^{*} 10^{-5} \mathrm{M}$
c. $1.1 * 10^{-5} \mathrm{M}$
d. $6.1 * 10^{-9} \mathrm{M}$
e. $1.1 * 10^{-10} \mathrm{M}$
3. In which of the following reactions do you expect to have the largest increase in entropy?
a. $\mathrm{I}_{2(\mathrm{~s})} \rightarrow \mathrm{I}_{2(\mathrm{~g})}$
b. $2 \mathrm{IF}_{(\mathrm{g})} \rightarrow \mathrm{I}_{2(\mathrm{~g})}+\mathrm{F}_{2(\mathrm{~g})}$
c. $\mathrm{Mn}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{MnO}_{2(\mathrm{~s})}$
d. $\mathrm{Hg}_{(\mathrm{l})}+\mathrm{S}_{(\mathrm{s})} \rightarrow \mathrm{HgS}_{(\mathrm{s})}$
e. $\mathrm{CuSO}_{4(\mathrm{~s})}+5 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})}$
4. For a particular reaction the equilibrium constant is $1.50^{*} 10^{-2}$ at $370^{\circ} \mathrm{C} . \Delta \mathrm{H}^{\circ}$ is +16.0 kJ . What is $\Delta \mathrm{S}^{\circ}$ for the reaction?
a. $-18.8 \mathrm{~J} / \mathrm{K}$
b. $+18.8 \mathrm{~J} / \mathrm{K}$
c. $-10.0 \mathrm{~J} / \mathrm{K}$
d. $+10.0 \mathrm{~J} / \mathrm{K}$
e. None of the above
5. How many electrons are transferred in the following reaction:

$$
2 \mathrm{ClO}_{3}^{-}+12 \mathrm{H}^{+}+10 \mathrm{I}^{-} \rightarrow 5 \mathrm{I}_{2}+\mathrm{Cl}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

a. 12
b. 5
c. 2
d. 30
e. 10
6. If a current of 6.0 amps is passed through a solution of $\mathrm{Ag}^{+}{ }_{(\text {aq })}$ for 1.5 hours, how many grams of silver are produced?
a. 0.60 g
b. 36 g
c. 0.34 g
d. 3.0 g
e. 1.0 g

Here are the answers to the previous questions:

1. What is the concentration of F^{-}in a saturated solution of BaF_{2} if $\mathrm{K}_{\mathrm{sp}}=1.7^{*} 10^{-6}$?
a. $7.5 * 10^{-3} \mathrm{M}$
b. $8.2 * 10^{-4} \mathrm{M}$
c. $1.5 * 10^{-2} \mathrm{M}$
d. $4.3 * 10^{-7} \mathrm{M}$
e. $1.5^{*} 10^{-6} \mathrm{M}$

Answer: Recall that the K_{sp} expression can be written as $\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{F}^{-}\right]^{2}$ for BaF_{2}. One mole of BaF_{2} creates two moles of F^{-}and one mole of Ba^{2+} per mol of BaF_{2} dissolved. If x represents the amount of Ba^{2+} dissolved, then 2 x represents the F^{-}, and we can re-write the $\mathrm{K}_{\text {sp }}$ expression as $\mathrm{K}_{\text {sp }}=1.7^{*} 10^{-6}=(\mathrm{x})(2 \mathrm{x})^{2}=(\mathrm{x})\left(4 \mathrm{x}^{2}\right)=4 \mathrm{x}^{3} . \mathrm{x}$ represents the solubility of the BaF_{2}, and here $\mathrm{x}=\left(1.7 * 10^{-6} / 4\right)^{1 / 3}=7.5^{*} 10^{-3} \mathrm{M}$. The concentration of [$\left.\mathrm{F}^{-}\right]$will be twice as much as the solubility (since there are two F^{-}ions per BaF_{2} molecule); hence, the concentration of F^{-}in a saturated BaF_{2} solution will be $2\left(7.5^{*} 10^{-3} \mathrm{M}\right)=\mathbf{1 . 5} * \mathbf{1 0}^{-\mathbf{2}} \mathbf{M}$, answer \mathbf{c}.
2. For $\mathrm{BaSO}_{4}, \mathrm{~K}_{\text {sp }}=1.1 * 10^{-10}$. What is the molar solubility of BaSO_{4} in a solution which is $0.018 \mathrm{M} \mathrm{in} \mathrm{Na}_{2} \mathrm{SO}_{4}$?
a. 0.018 M
b. $7.8 * 10^{-5} \mathrm{M}$
c. $1.1 * 10^{-5} \mathrm{M}$
d. $6.1 * 10^{-9} \mathrm{M}$
e. $1.1 * 10^{-10} \mathrm{M}$

Answer: If we have a $0.018 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ solution, we have, therefore, a solution with $\left[\mathrm{SO}_{4}{ }^{2-}\right]=0.018 \mathrm{M}$ and $\left[\mathrm{Na}^{+}\right]$ $=0.036 \mathrm{M}$.
K_{sp} for $\mathrm{BaSO}_{4}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO}_{4}{ }^{2-}\right]$, and normally we would write $\mathrm{K}_{\mathrm{sp}}=\mathrm{x}^{*} \mathrm{x}$ since both ions dissociate in a 1:1 ratio. x here is the solubility of the BaSO_{4}.

Here, however, we have a common ion present - namely sulfate. We can re-write the equation for $\mathrm{K}_{\text {sp }}$ as following:
$\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO}_{4}{ }^{2-}\right]=(\mathrm{x})(\mathrm{x}+0.018)$ since the sulfate has contributions from both the BaSO_{4} and the $\mathrm{Na}_{2} \mathrm{SO}_{4}$.
Normally x is much smaller than 0.018 , and $(\mathrm{x}+0.018)$ will likely be approximately equal to 0.018 using significant figures. We can re-write the equation as:
$\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO}_{4}{ }^{2-}\right]=(\mathrm{x})(\mathrm{x}+0.018)=(\mathrm{x})(0.018)$
Solving for x gives the solubility: $\mathrm{x}=\mathrm{K}_{\mathrm{sp}} / 0.018=1.1 * 10^{-10} / 0.018=6.1 * 10^{-9}$
Note that x is much less than 0.018 , making the assumption valid. Answer $=\mathbf{6 . 1} \mathbf{1 0}^{-9}$, answer \mathbf{d}.
3. In which of the following reactions do you expect to have the largest increase in entropy?
a. $\mathrm{I}_{\mathrm{s}(\mathrm{s})} \rightarrow \mathrm{I}_{2(\mathrm{~g})}$
b. $2 \mathrm{IF}_{(\mathrm{g})} \rightarrow \mathrm{I}_{2(\mathrm{~g})}+\mathrm{F}_{2(\mathrm{~g})}$
c. $\mathrm{Mn}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{MnO}_{2(\mathrm{~s})}$
d. $\mathrm{Hg}_{(\mathrm{l})}+\mathrm{S}_{(\mathrm{s})} \rightarrow \mathrm{HgS}_{(\mathrm{s})}$
e. $\mathrm{CuSO}_{4(\mathrm{~s})}+5 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})}$

Answer: Entropy will increase upon an increase in disorder. This can occur through several methods, including solids going to liquids and/or liquids going to gases. Another disorder enhancement comes about when a large molecule splits into many particles.

Option a shows a solid going to a gas. This would increase disorder; hence, this would increase the entropy.
Option b shows two gas molecules rearranging to make two more gas molecules. There is no disorder here except possibly in the fact that a mixed molecule (IF) is dissociating to "pure" elements (I_{2} and F_{2}), which might lead to a decrease in entropy (less randomness in the elements than in the molecules.) Hence, this option will probably lead to a decrease in entropy instead of an increase.

Option c has a solid and gas combining to make a solid. Anytime gases become solids there is usually a decrease in entropy, not an increase. Also, two molecules are changing into one product: this is less disorder, and a lowering of entropy.

Option d is similar to option c except that a liquid is being forced to become a solid. This will also lead to a decrease in entropy. Also, two molecules are changing into one product: this is less disorder, and a lowering of entropy.

Option e is similar to option d in that a liquid is being turned into a solid. Note also how six reactant molecules are converting to one product molecule: this is a more ordered product state, which defeats entropy. Entropy will diminish here.

The only option which should increase the entropy is option a, the correct answer for this problem.
4. For a particular reaction the equilibrium constant is $1.50^{*} 10^{-2}$ at $370^{\circ} \mathrm{C} . \Delta \mathrm{H}^{\circ}$ is +16.0 kJ . What is $\Delta \mathrm{S}^{\circ}$ for the reaction?
a. $-18.8 \mathrm{~J} / \mathrm{K}$
b. $+18.8 \mathrm{~J} / \mathrm{K}$
c. $-10.0 \mathrm{~J} / \mathrm{K}$
d. $+10.0 \mathrm{~J} / \mathrm{K}$
e. None of the above

Answer: To solve this problem we need two equations: $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$, and $\Delta \mathrm{G}=-\mathrm{RT} \ln \mathrm{K}$. Combining the equations leads to:
$\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}=-\mathrm{RT} \ln \mathrm{K}$, or
$\Delta \mathrm{S}=(\mathrm{RT} \ln \mathrm{K}+\Delta \mathrm{H}) / \mathrm{T}$
Converting ${ }^{\circ} \mathrm{C}$ to K and kJ to J gives:
$\Delta \mathrm{S}=\left((8.314 * 643 \mathrm{~K}) \ln \left(1.50 * 10^{-2}\right)+\left(16.0 * 10^{3} \mathrm{~J}\right)\right) / 643 \mathrm{~K}=\mathbf{- 1 0 . 0} \mathbf{J} / \mathrm{K}$, answer \mathbf{c}.
5. How many electrons are transferred in the following reaction:

$2 \mathbf{C l O}_{3}^{-}+12 \mathbf{H}^{+}+10 \mathrm{I}^{-} \rightarrow 5 \mathrm{I}_{2}+\mathrm{Cl}_{2}+\mathbf{6} \mathrm{H}_{\mathbf{2}} \mathrm{O}$

a. 12
b. 5
c. 2
d. 30
e. 10

Answer: To solve this equation, we need to break the oxidizing and reducing portions into half reactions. Cl in chlorate changes its oxidation number upon going to $\mathrm{Cl}_{2} ; \mathrm{I}^{-}$also changes its oxidation number upon going to I_{2}.

For the Cl :
$12 \mathrm{H}^{+}+2 \mathrm{ClO}_{3}^{-} \rightarrow \mathrm{Cl}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
gives a balanced reaction for mass, but not for charge. The product side has no charge, the reactant side has a net +10 charge; hence, add 10 electrons to the reactant side to balance charge. The result:
$10 \mathrm{e}^{-}+6 \mathrm{H}^{+}+2 \mathrm{ClO}_{3}^{-} \rightarrow \mathrm{Cl}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
For the I^{-}side,
$2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}$
This equation is balanced for mass, but not charge: the reactant side has a net -2 charge, and the product side has no charge. Add 2 electrons to balance the equation for both mass and charge to get:
$2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{e}^{-}$
We can now clearly see that the I^{-}is being oxidized (losing electrons) and the ClO_{3}^{-}is being reduced (gaining electrons.)

To balance the reaction, multiple the I^{-}equation by five to cancel the electrons. This results in ten net electrons being transferred from the I^{-}to the $\mathrm{ClO}_{3}{ }^{-}$, meaning that $\mathbf{1 0}$ electrons are being transferred, answer \mathbf{e}.
6. If a current of 6.0 amps is passed through a solution of $\mathrm{Ag}^{+}{ }_{\text {(aq) }}$ for 1.5 hours, how many grams of silver are produced?
a. 0.60 g
b. 36 g
c. 0.34 g
d. 3.0 g
e. 1.0 g

Answer: Remember that an amp equals a Coulomb per second. In addition, the Faraday ($96485 \mathrm{C} / \mathrm{mol} \mathrm{e}$ e) will be helpful, and each Ag^{+}will need one electron to become $\mathrm{Ag}_{(s)}$. Unit analysis will help to solve this problem:
$6.0 \mathrm{amps}=6.0 \mathrm{C} / \mathrm{s} *(60 \mathrm{~s} /$ minute $) *(60$ minutes $/$ hour $) * 1.5$ hours $=32400 \mathrm{C}$ delivered to the Ag^{+}.
To find out the quantity of silver produced, use the Faraday constant and the atomic mass of silver.
$32400 \mathrm{C} *\left(\mathrm{~mol} \mathrm{e}^{-} / 96485 \mathrm{C}\right) *\left(\mathrm{~mol} \mathrm{Ag}^{+} / \mathrm{mol} \mathrm{e}^{-}\right) *(108 \mathrm{~g} \mathrm{Ag} / \mathrm{mol} \mathrm{Ag})=\mathbf{3 6} \mathbf{g}$ of silver, answer \mathbf{b}.

