Question #1: (10 points) This reaction was studied at 25.0 °C: $P_4O_{10}(s) + 6 H_2O(l) \rightarrow 4 H_3PO_4(l)$ Use the data acquired to calculate values for ΔH°_{rxn} , ΔS°_{rxn} and finally ΔG°_{rxn} .

Species	$\Delta H_f^{\circ}(\text{kJ/mol})$	$S^{\circ}(J/K mol)$	
$P_4O_{10}(s)$	-2984.0	228.9	
$H_2O(l)$	-285.8	69.95	
H3PO4(<i>l</i>)	-1279.0	110.5	
$\Delta H_{rxn} = -417.2 \text{ kJ/mol}$			
$\Delta S_{rxn} = -206.6 \text{ J/mol}$			

 $\Delta G_{rxn} = -355.6 \text{ kJ/mol}$

Question #2: (5 points) One kind of battery used in watches contains mercury(II) oxide. As current flows, the mercury(II) oxide is reduced to mercury: $HgO(s) + H_2O(l) + 2 e^- \rightarrow Hg(l) + 2 OH^-(aq)$

If 2.3×10^{-5} amperes flows continuously for 1200 days, what mass of Hg(*l*) is produced?

2.5 g Hg

Question #3: (5 points) Write a balanced chemical equation for the following reaction in an acidic solution. $Cr_2O7^{2-}(aq) + Ni(s) \rightarrow Cr^{3+}(aq) + Ni^{2+}(aq)$

 $Cr_2O_7^{2-}(aq) + 14 H^+(aq) + 3 Ni(s) \rightarrow 2 Cr^{3+}(aq) + 7 H_2O(l) + 3 Ni^{2+}(aq)$