- 1. For the equilibrium $2 CO_{(g)} + O_{2(g)} \rightleftharpoons 2 CO_{2(g)}$ where $\Delta H < 0$, how will each of the following affect the equilibrium? Circle the correct answer. (4 points)
 - a. Oxygen is added to the system. **right** left no change
 - b. The reaction mixture is heated. right left no change
 - c. The pressure of the reaction mixture is increased. **right** left no change
 - d. CO₂ is removed from the system. **right** left no change
- 2. Complete and balance the following acid-base reactions. Identify the acid, base, conjugate acid and conjugate base in each reaction. Predict whether the equilibrium lies predominantly to the left or the right. (6 points)
 - a. HBr + NH₃ \rightarrow NH₄⁺ + Br⁻¹ SA WB CA CB b. HOCl + H₂O \rightarrow OCl⁻¹ + H₃O⁺¹ WA WB CB CA LEFT (WA)
- 3. What is the pH of a 0.116 M Mg(OH)₂ solution? Assume Mg(OH)₂ is a strong base. (3 points)

pH = 13.365

4. My soft drink has a pH of 6.22. Is the soft drink acidic, alkaline or neutral? Calculate the hydronium and hydroxide ion concentration in the soft drink. (3 points)

Acidic! [H₃O⁺] = 6.0 x 10⁻⁷ M [OH⁻¹] = 1.7 x 10⁻⁸ M

5. Benzoic acid, C₆H₅COOH, is a weak acid ($K_a = 6.28 \times 10^{-5}$). If I dissolve 1.22 g of C₆H₅COOH in enough water to make 500. mL of solution, what is the resulting pH of the solution? (4 points)

pH = 2.951