\qquad
\qquad

1. For the reaction: $\mathbf{C H}_{4}(\mathrm{~g})+\mathbf{2} \mathbf{O}_{\mathbf{2}}(\mathrm{g}) \rightleftharpoons \mathbf{C O}_{\mathbf{2}}(\mathrm{g})+\mathbf{2} \mathbf{H}_{\mathbf{2}} \mathbf{O}(\mathrm{g}), \mathbf{K}_{\mathbf{c}}=\mathbf{1 . 1 5 * 1 0 ^ { 7 }}$ (430. K), held within a 2.00 L flask (10 points)

Write the equilibrium constant expression for $\mathrm{K}_{\mathrm{c} .} \mathrm{K}_{\mathrm{c}}=\left[\mathrm{H}_{2} \mathbf{O}\right]^{2}\left[\mathrm{CO}_{2}\right] /\left[\mathrm{CH}_{4}\right]\left[\mathrm{O}_{2}\right]^{2}=\mathbf{1 . 1 5 \times 1 0} \mathbf{1 0}^{7}$
Is the reaction at equilibrium if $\left[\mathrm{CO}_{2}\right]=\left[\mathrm{H}_{2} \mathrm{O}\right]=0.00350 \mathrm{M},\left[\mathrm{O}_{2}\right]=3.31 * 10^{-6} \mathrm{M}$ and $\left[\mathrm{CH}_{4}\right]=3.31 * 10^{-6} \mathrm{M}$? If not, indicate the direction that the reaction must proceed to achieve equilibrium.
$Q=1.18 \times 10^{9}$
$\mathbf{Q}>\mathbf{K}$, will shift left (to reactant side)
What is the value of the equilibrium constant if the reaction is $2 \mathrm{CH}_{4}(\mathrm{~g})+4 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ at $430 . \mathrm{K}$?
$K_{\text {new }}=1.32 \times 10^{14}$
What is the value of K_{c} at 430 . K for the reaction: $\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})$
$K_{\text {new }}=8.70 \times 10^{-8}$
2. For the reaction: $\mathbf{C l}_{\mathbf{2}}(\mathbf{g})+\mathbf{B r}_{\mathbf{2}}(\mathbf{g}) \rightleftharpoons \mathbf{2} \mathbf{~ B r C l}(\mathbf{g}), \mathbf{K}_{\mathbf{c}}=\mathbf{1 0 . 3}\left(150^{\circ} \mathrm{C}\right)$ (4 points)

Is this reaction product-favored or reactant-favored? product favored $\left(\mathbf{K}_{\mathbf{c}}>\mathbf{1}\right)$
If 0.500 mol BrCl in a 1.00 L flask is allowed to reach equilibrium, what are the equilibrium concentrations of $\mathrm{Cl}_{2}, \mathrm{Br}_{2}$ and BrCl ?
$\left[\mathrm{Cl}_{2}\right]=\left[\mathrm{Br}_{2}\right]=\mathbf{0 . 0 9 6 0 ~ M}$
$[\mathrm{BrCl}]=0.308 \mathrm{M}$
3. For the reaction: $\mathbf{R X}(\mathbf{s}) \rightleftharpoons \mathbf{R}(\mathbf{g})+\mathbf{X}(\mathbf{g}), \mathbf{K}_{\mathbf{c}}=\mathbf{1 . 1 1 * 1 0} \mathbf{1 0}^{-\mathbf{7}}$ (200. K) (6 points)

Write the equilibrium constant expression. $\quad \mathbf{K}_{\mathbf{c}}=[\mathbf{R}][\mathbf{X}]=\mathbf{1 . 1 1 \times 1 0} \mathbf{1 0}^{-\mathbf{7}}$
Calculate the equilibrium concentrations of R and X if a solid sample of RX is placed in a closed vessel and decomposes until equilibrium is established.
$[\mathrm{R}]=[\mathrm{X}]=\mathbf{3 . 3 3 \times 1 0 ^ { - 4 }} \mathbf{M}$
What is the value of $\mathbf{K}_{\mathbf{p}}$ at 200 . K ?
$K_{p}=2.99 \times 10^{-5}$

