Worksheet due dates: Wed, 6/5: 9AM AC 1303 (01), 1:10 PM AC 2501 (H1), 11:59 PM (W1, email). Show detailed steps on how to get the given answer for each problem. Failure to use this form for work and answers will result in a point penalty.

<u>Problem 1</u>: Lauryl alcohol is obtained from coconut oil and is used to make detergents. A solution of 5.00 g of lauryl alcohol in 100. grams of benzene freezes at 4.1 °C. What is the molar mass of lauryl alcohol? (for benzene, $k_{fp} = 5.12$ °C/m; normal freezing point of benzene = 5.5 °C)

Answer to Problem #1: 180 g/mol

<u>Problem 2</u>: Rubidium has an atomic weight of 85.470 and two primary isotopes, namely rubidium-85 (84.9118 amu) and rubidium-87 (86.9092 amu). Calculate the abundance of each isotope.

Answer to Problem #2: 85Rb = 72.05%, 87Rb = 27.95%

<u>Problem 3</u>: Determine both the molecular and net ionic equations for the following reactions. *To get credit for this problem, both equations must be listed for each problem, and all states of matter (and charges) provided.*

a. Lead(II) nitrate is mixed with sodium iodide.

Molecular (balanced) equation:

Net ionic equation:

b. Aqueous strontium hydroxide is mixed with chromium(III) chloride.

Molecular (balanced) equation:

Net ionic equation:

Hints for Problem #3: a. PbI₂(s) and b. Cr(OH)₃(s)

<u>Problem 4</u>: *Three pH problems:*

Calculate the pH of a 0.200 M NaOH solution.	Calculate the pH of a 0.200 M acetic acid solution. $K_a = 1.8 \text{ x } 10^{-5}$	Calculate the pH of a solution containing 220. mL of 0.115 M pyridine ($K_b = 1.4 \text{ x}$ 10-9) and 150. mL of 0.100 M HCl.
pH =	pH =	pH =

Answer to Problem #4: 13.301, 2.72 and 4.99 (4.98 ok)

Problem 5: Determine the rat	e law for the follow	ing reaction and the	e value of the rate	constant, <i>k</i> .	$2 \operatorname{NO}(g) + \operatorname{O}_2(g) \rightarrow 2 \operatorname{NO}_2(g)$
	Experiment	[NO] (M)	[O ₂] (M)	Rate (M/s))
	1	0.0126	0.0125	1.41 x 10 ⁻²	
	2	0.0252	0.0125	5.64 x 10-2	
	3	0.0252	0.0250	1.13 x 10-1	

Answer to Problem #5: rate = $k[NO]^2[O_2]$, $k = 7.11 \times 10^3 (7.12 \times 10^3 \text{ ok})$