\qquad
Worksheet due dates: Wed, 6/5: 9AM AC 1303 (01), 1:10 PM AC 2501 (H1), 11:59 PM (W1, email). Show detailed steps on how to get the given answer for each problem. Failure to use this form for work and answers will result in a point penalty.

Problem 1: Lauryl alcohol is obtained from coconut oil and is used to make detergents. A solution of 5.00 g of lauryl alcohol in 100. grams of benzene freezes at $4.1^{\circ} \mathrm{C}$. What is the molar mass of lauryl alcohol? (for benzene, $\mathrm{k}_{\mathrm{fp}}=5.12{ }^{\circ} \mathrm{C} / \mathrm{m}$; normal freezing point of benzene $=5.5^{\circ} \mathrm{C}$)

Problem 2: Rubidium has an atomic weight of 85.470 and two primary isotopes, namely rubidium-85 (84.9118 amu) and rubidium-87 (86.9092 amu). Calculate the abundance of each isotope.

Problem 3: Determine both the molecular and net ionic equations for the following reactions. To get credit for this problem, both equations must be listed for each problem, and all states of matter (and charges) provided.

a. Lead(II) nitrate is mixed with sodium iodide.

Molecular (balanced) equation:

Net ionic equation:
b. Aqueous strontium hydroxide is mixed with chromium(III) chloride.

Molecular (balanced) equation:

Net ionic equation:

Hints for Problem \#3: $a . \mathbf{P b I}_{2}(\mathbf{s})$ and $b . \mathbf{C r}(\mathbf{O H})_{3}(\mathbf{s})$

Problem 4: Three pH problems:

Calculate the pH of a 0.200 M NaOH solution.

Calculate the pH of a 0.200 M acetic acid solution. $K_{\mathrm{a}}=1.8 \times 10^{-5}$
$\mathrm{pH}=$ \qquad

Calculate the pH of a solution containing 220. mL of 0.115 M pyridine $\left(K_{\mathrm{b}}=1.4 \mathrm{x}\right.$ 10^{-9}) and $150 . \mathrm{mL}$ of 0.100 M HCl .

$$
\mathrm{pH}=
$$

\qquad

Answer to Problem \#4: 13.301, 2.72 and 4.99 (4.98 ok)

Problem 5: Determine the rate law for the following reaction and the value of the rate constant, $k . \quad \mathbf{2} \mathbf{N O}(\mathbf{g})+\mathbf{O}_{\mathbf{2}}(\mathrm{g}) \rightarrow \mathbf{2} \mathbf{N O}_{\mathbf{2}}(\mathbf{g})$

Experiment	$[\mathbf{N O}](\mathbf{M})$	$\left[\mathbf{O}_{2}\right](\mathbf{M})$	Rate $(\mathbf{M} / \mathbf{s})$
1	0.0126	0.0125	1.41×10^{-2}
2	0.0252	0.0125	5.64×10^{-2}
3	0.0252	0.0250	1.13×10^{-1}

