\qquad
Worksheet due dates: Mon, 4/29, 1:10 PM (01), Wed, 5/1, 1:10 PM (H1) or 11:59 PM (W1, email). To complete, show detailed steps on how to get the given answer for each problem. Failure to use this form for work and answers will result in a point penalty.

Problem 1: Consider the following equilibrium: $\mathbf{2} \mathbf{N O C l}(\mathrm{g}) \rightleftharpoons 2 \mathbf{N O}(\mathrm{~g})+\mathbf{C l}_{\mathbf{2}}(\mathrm{g})$ where $\mathrm{K}=1.6$ * $\mathbf{1 0}^{-\mathbf{5}}$
1.0 mol of pure NOCl and 1.0 mol of pure Cl_{2} are placed in a 1.00 L container. Calculate the equilibrium concentration of $\mathrm{NO}(\mathrm{g})$ and $\mathrm{Cl}_{2}(\mathrm{~g})$. To receive credit, show a complete ICE table.

Answer to Problem \#1: $[\mathrm{NO}(\mathrm{g})]=\mathbf{4 . 0}{ }^{*} \mathbf{1 0}^{-\mathbf{3}} \mathbf{M},\left[\mathbf{C l}_{\mathbf{2}}(\mathrm{g})\right]=\mathbf{1 . 0} \mathbf{M}$

Problem 2: How many moles of benzoic acid, a monoprotic acid with $\mathrm{K}_{\mathrm{a}}=6.4{ }^{*} 10^{-5}$, must be dissolved in $500 . \mathrm{mL}^{\text {of }} \mathrm{H}_{2} \mathrm{O}$ to produce a solution with $\mathrm{pH}=2.50$?

Answer to Problem \#2: 7.9 * 10-2 mol (answers ± 0.1 ok, depends on method used to solve)
Problem 3: Complete the following problems using correct significant figures:

$$
\left[\mathrm{H}^{+}\right]=0.001501 \mathrm{M}, \text { and } \mathrm{pH}=
$$

$$
\mathrm{pK}_{\mathrm{b}}=10.35, \text { and } \mathrm{K}_{\mathrm{b}}=
$$

Problem 4: You have solutions of $0.200 \mathrm{M} \mathrm{HNO}_{2}$ and $0.200 \mathrm{M} \mathrm{KNO}_{2}\left(\mathrm{~K}_{\mathrm{a}}\right.$ for $\left.\mathrm{HNO}_{2}=4.00 * 10^{-4}\right)$. A buffer of pH 3.00 is needed. What volumes of HNO_{2} and KNO_{2} are required to make 1 liter of buffered solution? (Hints: $1000 \mathrm{~mL}=V_{w a}+V_{w b}$ and: rewrite Henderson-Hasselbalch, substituting $n_{w b} / n_{w a}$ for $C_{w b} V_{w b} / C_{w a} V_{w a}$ (because $n_{w a}=C_{w a} V_{w a}$, etc.))

Answer to Problem \#4: $\mathbf{7 1 5} \mathbf{~ m L}$ of $\mathbf{H N O}_{\mathbf{2}}$ and $\mathbf{2 8 5} \mathbf{~ m L}$ of $\mathrm{KNO}_{\mathbf{2}}, \pm \mathbf{1} \mathbf{~ m L} \mathbf{~ o k}$
Problem 5: What is the pH of a solution that results when $0.010 \mathrm{~mol} \mathrm{HNO}_{3}$ is added to $500 . \mathrm{mL}$ of a solution that is 0.10 M in aqueous ammonia and 0.20 M in ammonium nitrate? Assume no volume change, and K_{b} for $\mathrm{NH}_{3}=1.8 * 10^{-5}$)

Answer to Problem \#5: $\mathbf{p H}=\mathbf{8 . 8 2}$
Problem 6: You dissolve 1.00 g of an unknown diprotic acid in 200.0 mL of $\mathrm{H}_{2} \mathrm{O}$. The solution is just neutralized by 5.00 mL of a 1.00 M NaOH solution. What is the molar mass of the unknown acid?

