Worksheet due dates: <u>Mon, 4/28</u>, 1:10 PM (01), <u>Wed, 4/30</u>, 1:10 PM (H1) or 11:59 PM (W1, email). To complete, show *detailed steps* on how to get the given answer for each problem. *Failure to use this form for work and answers will result in a point penalty.*

Name:

<u>Problem 1</u>: Consider the following equilibrium: 2 NOCl(g) \rightleftharpoons 2 NO(g) + Cl₂(g) where K = 1.6 * 10⁻⁵ 1.0 mol of pure NOCl *and* 1.0 mol of pure Cl₂ are placed in a 1.00 L container. Calculate the equilibrium concentration of NO(g) and Cl₂(g). *To receive credit, show a complete ICE table.*

Answer to Problem #1: [NO(g)] = 4.0 * 10-3 M, [Cl₂(g)] = 1.0 M

<u>Problem 2</u>: How many moles of benzoic acid, a monoprotic acid with $K_a = 6.4 * 10^{-5}$, must be dissolved in 500. mL of H₂O to produce a solution with pH = 2.50?

Answer to Problem #2: 7.9 * 10^{-2} mol (answers ± 0.1 ok, depends on method used to solve)

Problem 3: Complete the following problems using correct significant figures:

 $[H^+] = 0.001501 \text{ M}, \text{ and } pH = _$

 $pK_b = 10.35$, and $K_b =$ _____

<u>Problem 4</u>: You have solutions of 0.200 M HNO₂ and 0.200 M KNO₂ (K_a for HNO₂ = 4.00 * 10⁻⁴). A buffer of pH 3.00 is needed. What volumes of HNO₂ and KNO₂ are required to make 1 liter of buffered solution? (*Hints: 1000 mL* = V_{wa} + V_{wb} and: rewrite Henderson-Hasselbalch, substituting n_{wb}/n_{wa} for $C_{wb}V_{wb}/C_{wa}V_{wa}$ (because $n_{wa} = C_{wa}V_{wa}$, etc.))

Answer to Problem #4: 715 mL of HNO₂ and 285 mL of KNO₂, ±1 mL ok

<u>Problem 5</u>: What is the pH of a solution that results when 0.010 mol HNO₃ is added to 500. mL of a solution that is 0.10 M in aqueous ammonia and 0.20 M in ammonium nitrate? Assume no volume change, and K_b for $NH_3 = 1.8 \times 10^{-5}$)

Answer to Problem #5: **pH = 8.82**

<u>Problem 6</u>: You dissolve 1.00 g of an unknown diprotic acid in 200.0 mL of H_2O . The solution is just neutralized by 5.00 mL of a 1.00 M NaOH solution. What is the molar mass of the unknown acid?

Answer to Problem #6: 400. g/mol