\qquad
\qquad
Part I: Multiple Choice Questions (100 Points) There is only one best answer for each question.

1. Which of the following equations is the solubility product for magnesium iodate, $\mathrm{Mg}\left(\mathrm{IO}_{3}\right)_{2}$?
a. $\quad K_{\mathrm{sp}}=\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{I}^{-1}\right]^{2}\left[\mathrm{O}^{-2}\right]^{6}$
b. $K_{\text {sp }}=\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{I}^{-1}\right]^{2}\left[3 \mathrm{O}^{-2}\right]^{2}$
c. $K_{\text {sp }}=\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{IO}_{3}^{-1}\right]$
d. $K_{\text {sp }}=\left[\mathrm{Mg}^{2+}\right]^{2}\left[\mathrm{IO}_{3}^{-1}\right]$
e. $K_{\text {sp }}=\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{IO}_{3}^{-1}\right]^{2}$
2. The solubility of SrSO_{4} in water is 0.107 g in 1.0 L at $25^{\circ} \mathrm{C}$. What is the value of $K_{\text {sp }}$ for SrSO_{4} ?
a. $\quad 3.4 \times 10^{-7}$
b. 5.8×10^{-4}
c. 1.2×10^{-3}
d. 1.1×10^{-2}
e. 2.1×10^{-1}
3. The solubility of lead (II) chloride, PbCl_{2}, is $1.6 \times 10^{-2} \mathrm{M}$. What is the $K_{\text {sp }}$ of PbCl_{2} ?
a. $\quad 5.0 \times 10^{-4}$
b. 4.1×10^{-6}
c. $\quad 3.1 \times 10^{-7}$
d. 1.6×10^{-5}
e. 1.6×10^{-2}
 $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ is 8.1×10^{-12}.
a. $\quad 1.8 \times 10^{-5}$
b. $\quad 1.4 \times 10^{-6}$
c. 2.8×10^{-6}
d. 3.2×10^{-10}
e. 8.1×10^{-12}
4. The $K_{\text {sp }}$ for $\mathrm{Zn}(\mathrm{OH})_{2}$ is 5.0×10^{-17}. Determine the molar solubility of $\mathrm{Zn}(\mathrm{OH})_{2}$ in a buffer solution with a pH of 11.5 .
a. $\quad 5.0 \times 10^{6}$
b. $\quad 1.2 \times 10^{-12}$
c. $\quad 1.6 \times 10^{-14}$
d. 5.0×10^{-12}
e. 5.0×10^{-17}
5. The molar solubility of \qquad is not affected by the pH of the solution.
a. $\quad \mathrm{Na}_{3} \mathrm{PO}_{4}$
b. NaF
c. KNO_{3}
d. AlCl_{3}
e. MnS
6. Consider the reaction

$$
\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{Zn}(\mathrm{OH})_{4}{ }^{2-}(\mathrm{aq}) \quad \boldsymbol{K}=\mathbf{8 . 7} \times \mathbf{1 0}^{-\mathbf{2}}
$$

If $\boldsymbol{K}_{\text {sp }}$ for $\mathrm{Zn}(\mathrm{OH})_{2}$ is $\mathbf{3 . 0} \times \mathbf{1 0}^{\mathbf{- 1 7}}$, what is the value of the formation constant, $K_{\text {form }}$, for the reaction below?
$\mathbf{Z n}^{2+}(\mathbf{a q})+4 \mathbf{O H}^{-}(\mathrm{aq}) \rightleftharpoons \mathbf{Z n}(\mathbf{O H}) 4^{2-}(\mathrm{aq})$
a. $\quad 2.6 \times 10^{-18}$
b. $\quad 3.4 \times 10^{-16}$
c. $\quad 2.9 \times 10^{15}$
d. 3.3×10^{16}
e. 3.8×10^{17}
8. The following anions can be separated by precipitation as silver salts: $\mathrm{Cl}^{-1}, \mathrm{Br}^{-1}, \mathrm{I}^{-1}, \mathrm{CrO}_{4}{ }^{2-}$. If Ag^{+}is added to a solution containing the four anions, each at a concentration of 0.10 M , in what order will they precipitate?

Compound	$K_{\text {sp }}$
AgCl	1.8×10^{-10}
$\mathrm{Ag}_{2} \mathrm{CrO} 4$	1.1×10^{-12}
AgBr	5.4×10^{-13}
AgI	8.5×10^{-17}

a. $\mathrm{AgCl} \rightarrow \mathrm{Ag}_{2} \mathrm{CrO}_{4} \rightarrow \mathrm{AgBr} \rightarrow \mathrm{AgI}$
b. $\mathrm{AgI} \rightarrow \mathrm{AgBr} \rightarrow \mathrm{Ag}_{2} \mathrm{CrO}_{4} \rightarrow \mathrm{AgCl}$
c. $\mathrm{Ag}_{2} \mathrm{CrO}_{4} \rightarrow \mathrm{AgCl} \rightarrow \mathrm{AgBr} \rightarrow \mathrm{AgI}$
d. $\mathrm{Ag}_{2} \mathrm{CrO}_{4} \rightarrow \mathrm{AgI} \rightarrow \mathrm{AgBr} \rightarrow \mathrm{AgCl}$
e. $\mathrm{AgI} \rightarrow \mathrm{AgBr} \rightarrow \mathrm{AgCl} \rightarrow \mathrm{Ag}_{2} \mathrm{CrO}_{4}$
9. A statement of the second law of thermodynamics is that
a. spontaneous reactions are always exothermic.
b. energy is conserved in a chemical reaction.
c. the Gibbs free energy is a function of both enthalpy and entropy.
d. $\Delta \mathrm{S}=-\Delta \mathrm{H}$ for any chemical reaction.
e. in a spontaneous process, the entropy of the universe increases.
10. As defined by Ludwig Boltzmann, the third law of thermodynamics states that
a. in a spontaneous process, the entropy of the universe increases.
b. there is no disorder in a perfect crystal at 0 K .
c. the total entropy of the universe is always increasing.
d. the total energy of the universe is constant.
e. mass and energy are conserved in all chemical reactions.
11. Which of the following processes involves a decrease in entropy?
a. the decomposition of $\mathrm{NH}_{3}(\mathrm{~g})$ into $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{N}_{2}(\mathrm{~g})$ gas
b. the dissolution of NaCl in water
c. the condensation of steam to liquid water
d. the evaporation of ethanol
e. the sublimation of dry ice (i.e., $\mathrm{CO}_{2}(\mathrm{~s})$)
12. Calculate the standard entropy change for the following reaction,
$2 \mathrm{HgO}(\mathrm{s}) \rightleftharpoons 2 \mathrm{Hg}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$
given $S^{\circ}[\mathrm{HgO}]=70.3 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}, S^{\circ}[\mathrm{Hg}(\mathrm{l})]=76.0 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$, and $S^{\circ}\left[\mathrm{O}_{2}(\mathrm{~g})\right]=205.1 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$.
a. $\quad-216.5 \mathrm{~J} / \mathrm{K}$
b. $+210.8 \mathrm{~J} / \mathrm{K}$
c. $+216.5 \mathrm{~J} / \mathrm{K}$
d. $+351.4 \mathrm{~J} / \mathrm{K}$
e. $+497.7 \mathrm{~J} / \mathrm{K}$
13. Predict the signs of $\Delta \mathrm{H}, \Delta \mathrm{S}$, and $\Delta \mathrm{G}$ for the evaporation of water $25^{\circ} \mathrm{C}$.
a. $\quad \Delta \mathrm{H}>0, \Delta \mathrm{~S}<0, \Delta \mathrm{G}<0$
b. $\Delta \mathrm{H}>0, \Delta \mathrm{~S}>0, \Delta \mathrm{G}>0$
c. $\Delta \mathrm{H}<0, \Delta \mathrm{~S}>0, \Delta \mathrm{G}<0$
d. $\Delta \mathrm{H}<0, \Delta \mathrm{~S}>0, \Delta \mathrm{G}>0$
e. $\Delta \mathrm{H}<0, \Delta \mathrm{~S}<0, \Delta \mathrm{G}<0$
14. The dissolution of ammonium nitrate occurs spontaneously in water at $25^{\circ} \mathrm{C}$. As $\mathrm{NH}_{4} \mathrm{NO}_{3}$ dissolves, the temperature of the water decreases. What are the signs of $\Delta \mathrm{H}, \Delta \mathrm{S}$, and $\Delta \mathrm{G}$ for this process?
a. $\Delta \mathrm{H}>0, \Delta \mathrm{~S}<0, \Delta \mathrm{G}>0$
b. $\Delta \mathrm{H}>0, \Delta \mathrm{~S}>0, \Delta \mathrm{G}>0$
c. $\Delta \mathrm{H}>0, \Delta \mathrm{~S}>0, \Delta \mathrm{G}<0$
d. $\Delta \mathrm{H}<0, \Delta \mathrm{~S}<0, \Delta \mathrm{G}<0$
e. $\Delta \mathrm{H}<0, \Delta \mathrm{~S}>0, \Delta \mathrm{G}>0$
15. Diluting concentrated sulfuric acid with water can be dangerous. The temperature of the solution can increase rapidly. What are the signs of $\Delta \mathrm{H}, \Delta \mathrm{S}$, and $\Delta \mathrm{G}$ for this process?
a. $\Delta H<0, \Delta S>0, \Delta G<0$
b. $\Delta H<0, \Delta S<0, \Delta G<0$
c. $\Delta H<0, \Delta S>0, \Delta G>0$
d. $\Delta H>0, \Delta S>0, \Delta G<0$
e. $\Delta H>0, \Delta S<0, \Delta G>0$
16. At what temperatures will a reaction be spontaneous if $\Delta \mathrm{H}=-76.0 \mathrm{~kJ}$ and $\Delta \mathrm{S}=+231 \mathrm{~J} / \mathrm{K}$?
a. All temperatures below 329 K
b. Temperatures between 0 K and 231 K
c. All temperatures above 329 K
d. The reaction will be spontaneous at any temperature.
e. The reaction will never be spontaneous.
17. Calculate $\Delta \mathrm{G}^{\circ}{ }_{\mathrm{rxn}}$ for the reaction below at $25.0^{\circ} \mathrm{C}$

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})
$$

given $\Delta \mathrm{G}_{f}^{\circ}[\mathrm{CO}(\mathrm{g})]=-137.2 \mathrm{~kJ} / \mathrm{mol}, \Delta \mathrm{G}_{f}^{\circ}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]=-237.2 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta \mathrm{G}^{\circ}\left[\mathrm{CO}_{2}(\mathrm{~g})\right]=-394.4 \mathrm{~kJ} / \mathrm{mol}$.
a. $\quad-768.8 \mathrm{~kJ}$
b. $\quad-294.4 \mathrm{~kJ}$
c. $\quad-20.0 \mathrm{~kJ}$
d. +20.0 kJ
e. +768.8 kJ
18. \qquad is reduced in the following reaction: $\mathbf{C r}_{2} \mathrm{O}_{7}{ }^{2-}+\mathbf{6} \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}+\mathbf{1 4} \mathbf{H}^{+1} \rightarrow \mathbf{2} \mathbf{C r}^{3+}+\mathbf{3} \mathbf{S}_{4} \mathbf{O}_{6}{ }^{2-}+\mathbf{7} \mathbf{H}_{2} \mathbf{O}$
a. Cr^{6+}
b. S^{2+}
c. H^{+1}
d. O^{2-}
e. $\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}$
19. Which substance is the reducing agent in the following reaction: $\mathbf{C r}_{2} \mathbf{O}_{7}{ }^{2-}+\mathbf{3} \mathbf{N i}+\mathbf{1 4} \mathbf{H}^{+1} \rightarrow \mathbf{2} \mathbf{C r}^{\mathbf{3 +}}+\mathbf{3} \mathbf{N i}^{2+}+\mathbf{7} \mathbf{H}_{\mathbf{2}} \mathbf{O}$
a. Ni
b. H^{+1}
c. $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$
d. $\mathrm{H}_{2} \mathrm{O}$
e. Ni^{2+}
20. The balanced half-reaction in which one mole of chlorine gas is reduced to the aqueous chloride ion is a \qquad process.
a. one-electron
b. two-electron
c. four-electron
d. three-electron
e. six-electron
21. The half-reaction occurring at the anode in the balanced reaction shown below is

$$
3 \mathrm{MnO}_{4}{ }^{1-}(\mathrm{aq})+5 \mathrm{Fe}(\mathrm{~s})+24 \mathrm{H}^{+1}(\mathrm{aq}) \rightarrow 3 \mathrm{Mn}^{2+}(\mathrm{aq})+5 \mathrm{Fe}^{3+}(\mathrm{aq})+12 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

a. $\mathrm{MnO}_{4}{ }^{1-}(\mathrm{aq})+8 \mathrm{H}^{+1}(\mathrm{aq})+5 \mathrm{e}^{-1} \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
b. $2 \mathrm{MnO}_{4}{ }^{1-}(\mathrm{aq})+12 \mathrm{H}^{+1}(\mathrm{aq})+6 \mathrm{e}^{-1} \rightarrow 2 \mathrm{Mn}^{2+}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
c. $\mathrm{Fe}(\mathrm{s}) \rightarrow \mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-1}$
d. $\mathrm{Fe}(\mathrm{s}) \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-1}$
e. $\mathrm{Fe}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-1}$
22. The standard cell potential (E° cell) of the reaction below is $\mathbf{+ 0 . 1 2 6} \mathrm{V}$. The value of $\Delta \mathrm{G}^{\circ}$ for the reaction is \qquad $\mathrm{kJ} / \mathrm{mol}$. $\mathbf{P b}(\mathrm{s})+2 \mathbf{H}^{+1}(\mathrm{aq}) \rightarrow \mathbf{P b}^{2+}(\mathrm{aq})+\mathbf{H}_{2}(\mathrm{~g})$
a. -24.3
b. +24.3
c. -12.6
d. +12.6
e. -50.8
23. How many grams of Ca metal are produced by the electrolysis of molten CaBr_{2} using a current of 30.0 amp for 10.0 hours?
a. $\quad 22.4$
b. 448
c. 0.0622
d. 224
e. 112
24. Which one of the following reactions is a redox reaction?
a. $\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
b. $\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-1}(\mathrm{aq}) \rightarrow \mathrm{PbCl}_{2}(\mathrm{aq})$
c. $\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{AgCl}(\mathrm{s})$
d. None of the above is a redox reaction.
e. All of the above are redox reactions
25. What is the coefficient for Fe^{3+} when the following equation is balanced? $\mathrm{CN}^{-1}+\mathrm{Fe}^{3+} \rightarrow \mathrm{CNO}^{-1}+\mathrm{Fe}^{2+}, \mathrm{pH}=10.75$
a. 1
b. 2
c. 3
d. 4
e. 5

Part II: Short Answer / Calculation. Show all work!

1. A solution contains $0.10 \mathrm{M} \mathrm{Cl}^{-}$and $0.10 \mathrm{M} \mathrm{Br}^{-}$ions. $K_{\text {sp }}$ for $\mathrm{AgCl}=1.8 \times 10^{-10}, K_{\text {sp }}$ for $\mathrm{AgBr}=3.3 \times 10^{-13}$. (10 points)
a. AgNO_{3} is added until a white solid just begins to precipitate. What is the identity of the precipitate?
b. What is the concentration of the less soluble ion once the more soluble ion begins to precipitate out of solution?

Part II: Short Answer / Calculation (continued) Show all work!
2. Calculate ΔG° for the reaction below at $25.0^{\circ} \mathrm{C}$. (10 points) $\mathrm{P}_{4}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{l})$

Species	$\Delta \mathrm{H}^{\circ}(\mathrm{kJ} / \mathrm{mol})$	$\mathrm{S}^{\circ}(\mathrm{J} / \mathrm{K} \cdot \mathrm{mol})$
$\mathrm{P}_{4}(\mathrm{~s})$	0	22.80
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	-285.8	69.95
$\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{l})$	-1279.0	110.5

3. Calculate ΔG° and the equilibrium constant, $K_{\text {eq }}$, for the disproportionation reaction (below) of Cu^{+1} at $25^{\circ} \mathrm{C}$:

$$
2 \mathrm{Cu}^{+1}(\mathrm{aq}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s})
$$

given the following thermodynamic information. (10 points)

$$
\begin{array}{ll}
\mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{~s}) & E^{\circ}=+0.518 \mathrm{~V} \\
\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{~s}) & E^{\circ}=+0.337 \mathrm{~V}
\end{array}
$$

