Part I: Multiple Choice Questions (100 Points) There is only one best answer for each question.

- 1. Which of the following equations is the solubility product for magnesium iodate, Mg(IO₃)₂?
 - a. $K_{\rm sp} = [Mg^{2+}][I^{-1}]^2[O^{-2}]^6$
 - b. $K_{\rm sp} = [{\rm Mg}^{2+}][{\rm I}^{-1}]^2[{\rm 3O}^{-2}]^2$
 - c. $K_{\rm sp} = [Mg^{2+}][IO_3^{-1}]$
 - d. $K_{\rm sp} = [{\rm Mg}^{2+}]^2 [{\rm IO}_3^{-1}]$
 - e. $K_{\rm sp} = [{\rm Mg}^{2+}][{\rm IO}_3^{-1}]^2$
- 2. The solubility of SrSO₄ in water is 0.107 g in 1.0 L at 25 °C. What is the value of K_{sp} for SrSO₄?
 - a. 3.4×10^{-7}
 - b. 5.8×10^{-4}
 - c. 1.2×10^{-3}
 - d. 1.1×10^{-2}
 - e. 2.1×10^{-1}
- 3. The solubility of lead (II) chloride, PbCl₂, is 1.6×10^{-2} M. What is the K_{sp} of PbCl₂?
 - a. 5.0 x 10⁻⁴
 - b. 4.1 x 10⁻⁶
 - c. 3.1 x 10⁻⁷
 - d. 1.6 x 10⁻⁵
 - e. 1.6 x 10⁻²
- 4. Calculate the maximum concentration (in M) of silver ions (Ag⁺) in a solution that contains 0.025 M of CO₃²⁻. The K_{sp} of Ag₂CO₃ is 8.1 x 10⁻¹².
 - a. 1.8 x 10⁻⁵
 - b. 1.4 x 10⁻⁶
 - c. 2.8 x 10⁻⁶
 - d. 3.2 x 10⁻¹⁰
 - e. 8.1 x 10⁻¹²
- 5. The K_{sp} for Zn(OH)₂ is 5.0 x 10⁻¹⁷. Determine the molar solubility of Zn(OH)₂ in a buffer solution with a pH of 11.5.
 - a. $5.0 \ge 10^6$
 - b. 1.2 x 10⁻¹²
 - c. 1.6 x 10⁻¹⁴
 - d. 5.0 x 10⁻¹²
 - e. $5.0 \ge 10^{-17}$
- 6. The molar solubility of ______ is not affected by the pH of the solution.
 - a. Na₃PO₄
 - b. NaF
 - c. KNO₃
 - d. AlCl₃
 - e. MnS

7. Consider the reaction

 $Zn(OH)_{2}(s) + 2 OH^{-}(aq) \iff Zn(OH)_{4}^{2-}(aq) \qquad K = 8.7 \times 10^{-2}$ If K_{sp} for $Zn(OH)_{2}$ is 3.0×10^{-17} , what is the value of the formation constant, K_{form} , for the reaction below? $Zn^{2+}(aq) + 4 OH^{-}(aq) \iff Zn(OH)_{4}^{2-}(aq)$

- a. 2.6 x 10⁻¹⁸
- b. 3.4 x 10⁻¹⁶
- c. 2.9 x 10¹⁵
- d. 3.3 x 10¹⁶
- e. $3.8 \ge 10^{17}$
- 8. The following anions can be separated by precipitation as silver salts: Cl⁻¹, Br⁻¹, I⁻¹, CrO₄²⁻. If Ag⁺ is added to a solution containing the four anions, each at a concentration of 0.10 M, in what order will they precipitate?

Compound	$K_{ m sp}$
AgCl	1.8×10^{-10}
Ag ₂ CrO ₄	1.1×10^{-12}
AgBr	5.4×10^{-13}
AgI	8.5×10^{-17}

- a. $AgCl \rightarrow Ag_2CrO_4 \rightarrow AgBr \rightarrow AgI$
- b. $AgI \rightarrow AgBr \rightarrow Ag_2CrO_4 \rightarrow AgCl$
- c. $Ag_2CrO_4 \rightarrow AgCl \rightarrow AgBr \rightarrow AgI$
- d. $Ag_2CrO_4 \rightarrow AgI \rightarrow AgBr \rightarrow AgCl$
- e. $AgI \rightarrow AgBr \rightarrow AgCl \rightarrow Ag_2CrO_4$
- 9. A statement of the second law of thermodynamics is that
 - a. spontaneous reactions are always exothermic.
 - b. energy is conserved in a chemical reaction.
 - c. the Gibbs free energy is a function of both enthalpy and entropy.
 - d. $\Delta S = -\Delta H$ for any chemical reaction.
 - e. in a spontaneous process, the entropy of the universe increases.
- 10. As defined by Ludwig Boltzmann, the third law of thermodynamics states that
 - a. in a spontaneous process, the entropy of the universe increases.
 - b. there is no disorder in a perfect crystal at 0 K.
 - c. the total entropy of the universe is always increasing.
 - d. the total energy of the universe is constant.
 - e. mass and energy are conserved in all chemical reactions.
- 11. Which of the following processes involves a decrease in entropy?
 - a. the decomposition of NH₃(g) into H₂(g) and N₂(g) gas
 - b. the dissolution of NaCl in water
 - c. the condensation of steam to liquid water
 - d. the evaporation of ethanol
 - e. the sublimation of dry ice (i.e., CO₂(s))

 12. Calculate the standard entropy change for the following reaction, 2 HgO(s) ⇒ 2 Hg(l) + O₂(g) given S°[HgO] = 70.3 J/K·mol, S°[Hg(l)] =76.0 J/K·mol, and S°[O₂(g)] = 205.1 J/K·mol.

- a. -216.5 J/K
- b. +210.8 J/K
- c. +216.5 J/K
- d. +351.4 J/K
- e. +497.7 J/K
- 13. Predict the signs of Δ H, Δ S, and Δ G for the evaporation of water 25 °C.
 - a. $\Delta H > 0, \Delta S < 0, \Delta G < 0$
 - b. $\Delta H > 0, \Delta S > 0, \Delta G > 0$
 - c. $\Delta H < 0, \Delta S > 0, \Delta G < 0$
 - d. $\Delta H < 0, \Delta S > 0, \Delta G > 0$
 - e. $\Delta H < 0, \Delta S < 0, \Delta G < 0$
- 14. The dissolution of ammonium nitrate occurs spontaneously in water at 25 °C. As NH₄NO₃ dissolves, the temperature of the water decreases. What are the signs of Δ H, Δ S, and Δ G for this process?
 - a. $\Delta H > 0, \Delta S < 0, \Delta G > 0$
 - b. $\Delta H > 0, \Delta S > 0, \Delta G > 0$
 - c. $\Delta H > 0, \Delta S > 0, \Delta G < 0$
 - d. $\Delta H < 0, \Delta S < 0, \Delta G < 0$
 - e. $\Delta H < 0, \Delta S > 0, \Delta G > 0$
- 15. Diluting concentrated sulfuric acid with water can be dangerous. The temperature of the solution can increase rapidly. What are the signs of Δ H, Δ S, and Δ G for this process?
 - a. $\Delta H < 0, \Delta S > 0, \Delta G < 0$
 - b. $\Delta H < 0, \Delta S < 0, \Delta G < 0$
 - c. $\Delta H < 0, \Delta S > 0, \Delta G > 0$
 - d. $\Delta H > 0, \Delta S > 0, \Delta G < 0$
 - e. $\Delta H > 0, \Delta S < 0, \Delta G > 0$

16. At what temperatures will a reaction be spontaneous if $\Delta H = -76.0$ kJ and $\Delta S = +231$ J/K?

- a. All temperatures below 329 K
- b. Temperatures between 0 K and 231 K
- c. All temperatures above 329 K
- d. The reaction will be spontaneous at any temperature.
- e. The reaction will never be spontaneous.

17. Calculate ΔG°_{rxn} for the reaction below at 25.0 °C

 $\begin{array}{l} \text{CO}(g) \ + \ \text{H}_2\text{O}(l) \ \rightarrow \ \text{H}_2(g) \ + \ \text{CO}_2(g) \\ \text{given} \ \Delta\text{G}^\circ_f[\text{CO}(g)] = -137.2 \ \text{kJ/mol}, \ \Delta\text{G}^\circ_f[\text{H}_2\text{O}(l)] = -237.2 \ \text{kJ/mol} \ \text{and} \ \Delta\text{G}^\circ_f[\text{CO}_2(g)] = -394.4 \ \text{kJ/mol}. \end{array}$

- a. -768.8 kJ
- b. -294.4 kJ
- c. -20.0 kJ
- d. +20.0 kJ
- e. +768.8 kJ

18. _____ is reduced in the following reaction: $Cr_2O_7^{2-} + 6 S_2O_3^{2-} + 14 H^{+1} \rightarrow 2 Cr^{3+} + 3 S_4O_6^{2-} + 7 H_2O_7^{2-}$

- a. Cr⁶⁺
- $b. \quad S^{2+}$
- c. H⁺¹
- d. O²⁻
- e. S4O6²⁻

19. Which substance is the reducing agent in the following reaction: $Cr_2O_7^{2-} + 3 Ni + 14 H^{+1} \rightarrow 2 Cr^{3+} + 3 Ni^{2+} + 7 H_2O_7^{2-}$

- a. Ni
- b. H⁺¹
- c. Cr₂O₇²⁻
- d. H₂O
- e. Ni²⁺

20. The balanced half-reaction in which one mole of chlorine gas is reduced to the aqueous chloride ion is a process.

- a. one-electron
- b. two-electron
- c. four-electron
- d. three-electron
- e. six-electron

21. The half-reaction occurring at the *anode* in the balanced reaction shown below is _____.

- $3 \text{ MnO}_4^{1-}(aq) + 5 \text{ Fe}(s) + 24 \text{ H}^{+1}(aq) \rightarrow 3 \text{ Mn}^{2+}(aq) + 5 \text{ Fe}^{3+}(aq) + 12 \text{ H}_2O(l)$
- a. $MnO_4^{1-}(aq) + 8 H^{+1}(aq) + 5 e^{-1} \rightarrow Mn^{2+}(aq) + 4 H_2O(1)$
- b. $2 \text{ MnO4}^{1-}(aq) + 12 \text{ H}^{+1}(aq) + 6 \text{ e}^{-1} \rightarrow 2 \text{ Mn}^{2+}(aq) + 3 \text{ H}_2O(l)$
- c. $Fe(s) \rightarrow Fe^{3+}(aq) + 3e^{-1}$
- d. $Fe(s) \rightarrow Fe^{2+}(aq) + 2e^{-1}$
- e. $Fe^{2+}(aq) \rightarrow Fe^{3+}(aq) + e^{-1}$

22. The standard cell potential (E°_{cell}) of the reaction below is +0.126 V. The value of ΔG° for the reaction is ______ kJ/mol. Pb(s) + 2 H⁺¹(aq) \rightarrow Pb²⁺(aq) + H₂(g)

- a. -24.3
- b. +24.3
- c. -12.6
- d. +12.6
- e. -50.8

23. How many grams of Ca metal are produced by the electrolysis of molten CaBr₂ using a current of 30.0 amp for 10.0 hours?

- a. 22.4
- b. 448
- c. 0.0622
- d. 224
- e. 112

- 24. Which one of the following reactions is a redox reaction?
 - a. NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H₂O(l)
 - b. $Pb^{2+}(aq) + 2 Cl^{-1}(aq) \rightarrow PbCl_2(aq)$
 - c. $AgNO_3(aq) + HCl(aq) \rightarrow HNO_3(aq) + AgCl(s)$
 - d. None of the above is a redox reaction.
 - e. All of the above are redox reactions

25. What is the coefficient for Fe³⁺ when the following equation is *balanced*? $CN^{-1} + Fe^{3+} \rightarrow CNO^{-1} + Fe^{2+}$, pH = 10.75

- a. 1
- b. 2
- c. 3
- d. 4
- e. 5

Part II: Short Answer / Calculation. Show all work!

- 1. A solution contains 0.10 M Cl⁻ and 0.10 M Br⁻ ions. K_{sp} for AgCl = 1.8×10^{-10} , K_{sp} for AgBr = 3.3×10^{-13} . (10 points) a. AgNO₃ is added until a white solid just begins to precipitate. What is the identity of the precipitate?

 - b. What is the concentration of the less soluble ion once the more soluble ion begins to precipitate out of solution?

Part II: Short Answer / Calculation (continued) Show all wor
--

2. Calculate ΔG° for the reaction below at 25.0 °C. (10 points) P₄(s) + 6 H₂O(l) \rightarrow 4 H₃PO₄(l)

Species	ΔH°_{f} (kJ/mol)	$S^{\circ}_{f}(J/K \cdot mol)$	
P4(s)	0	22.80	
$H_2O(1)$	-285.8	69.95	
$H_3PO_4(1)$	-1279.0	110.5	

3. Calculate ΔG° and the equilibrium constant, K_{eq} , for the disproportionation reaction (below) of Cu⁺¹ at 25 °C: 2 Cu⁺¹(aq) \rightarrow Cu²⁺(aq) + Cu(s)

given the following thermodynamic information. (10 points)

$Cu^+(aq) + e^- \rightarrow Cu(s)$	$E^{\circ} = +0.518 \text{ V}$
$Cu^{2+}(aq) + 2 e^{-} \rightarrow Cu(s)$	$E^{\circ} = +0.337 \text{ V}$