Part I: Multiple Choice Questions (100 Points) There is only one best answer for each question.

Write the expression for K for the reaction: $Al_2S_3(s) \rightleftharpoons 2 Al^{3+}(aq) + 3 S^{2-}(aq)$

$$K = [A1^{3+}]^2 [S^{2-}]^3$$

$$K = [A1^{3+}][S^{2-}]$$

$$K = [2 \text{ Al}^{3+}][3 \text{ S}^{2-}]$$

$$K = \frac{[Al_2S_3]}{[Al^{3+}]^2[S^{2-}]^3}$$

d.
$$\frac{K - \frac{1}{[Al^{3+}]^2[S^{2-}]^3}}{[Al^{3+}]^2[S^{2-}]^3}$$

$$K = \frac{[Al^{3+}]^2[S^{2-}]^3}{[Al_2S_3]}$$
e.

Write the expression for K_p for the reaction: $2 \text{ HBr}(g) \iff H_2(g) + Br_2(l)$

$$K_{\rm p} = \frac{P_{\rm HBr}^2}{P_{\rm Br_2}P_{\rm H_2}}$$
a.

$$K_{\rm p} = \frac{P_{\rm H_2}}{P_{\rm HBr}^2}$$

$$K_{\rm p} = P_{\rm HBr}^2$$

$$K_{\rm p} = \frac{P_{\rm HBr}^2}{P_{\rm H_2}}$$

d.
$$P_{H_2}$$

$$K_{\rm p} = rac{P_{
m H_2} P_{
m Br_2}}{P_{
m HBr}^2}$$

- A 4.00 L flask is filled with 0.75 mol SO₃, 2.50 mol SO₂, and 1.30 mol O₂, and allowed to reach equilibrium. Predict the effect on the concentrations of SO₃ as equilibrium is achieved by using Q, the reaction quotient. Assume the temperature of the mixture is chosen so that $K_c = 12$. 2 $SO_3(g) \rightleftharpoons 2 SO_2(g) + O_2(g)$
 - [SO₃] will decrease because Q > K.
 - [SO₃] will decrease because Q < K.
 - [SO₃] will increase because Q < K.
 - [SO₃] will increase because Q > K.
 - [SO₃] will remain the same because Q = K.
- This reaction below is studied at a high temperature. $PCl_3(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ At equilibrium, the partial pressures of the gases are as follows: $PCl_5 = 1.8 \times 10^{-2}$ atm, $PCl_3 = 5.6 \times 10^{-2}$ atm, and $Cl_2 = 3.8 \times 10^{-4}$ atm. What is the value of K_P for the reaction?

a.
$$3.8 \times 10^{-7}$$

b.
$$1.2 \times 10^{-3}$$

- 3.1
- 8.5×10^{2}
- 2.6×10^{6}

- 5. A sealed tube is prepared with 1.07 atm PCl₅ at 500 K. The PCl₅ decomposes until equilibrium is established; 1.54 atm is the equilibrium pressure of the tube. Calculate K_p using the equation: $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$
 - a. 0.052
 - b. 0.20
 - c. 0.27
 - d. 0.37
 - e. 2.2
- 6. Hydrogen monoiodide can decompose into hydrogen and iodine gases: $2 \text{ HI}(g) \iff \text{H}_2(g) + \text{I}_2(g) \text{ K}_p = 0.016 \text{ at -17 °C}$. If 0.820 atm of HI(g) is sealed in a flask at -17 °C, what is the pressure of each gas when equilibrium is established?
 - a. HI = 0.576 atm, $H_2 = 0.096$ atm, $I_2 = 0.096$ atm
 - b. HI = 0.654 atm, $H_2 = 0.083$ atm, $I_2 = 0.083$ atm
 - c. HI = 0.728 atm, $H_2 = 0.092$ atm, $I_2 = 0.092$ atm
 - d. HI = 0.737 atm, $H_2 = 0.083$ atm, $I_2 = 0.083$ atm
 - e. HI = 0.768 atm, $H_2 = 0.111$ atm, $I_2 = 0.111$ atm
- 7. Using the chemical reactions below, determine the equilibrium constant for the following reaction:

$$Ca^{2+}(aq) + 2 H_2O(1) \iff Ca(OH)_2(s) + 2 H^{+}(aq)$$

Ca(OH)₂(s)
$$\rightleftharpoons$$
 Ca²⁺(aq) + 2 OH⁻(aq) $K = 6.5 \times 10^{-6}$
H₂O(l) \rightleftharpoons H⁺(aq) + OH⁻(aq) $K = 1.0 \times 10^{-14}$

- a. 1.5×10^{-23}
- b. 6.5×10^{-20}
- c. 1.3×10^{-19}
- d. 1.5×10^{-9}
- e. 1.5×10^{19}
- 8. Hydrogen and iodine react to form hydrogen monoiodide according to: $H_2(g) + I_2(g) \rightleftharpoons 2 HI(g) K_c = 0.504$ at 25 °C. If initial concentrations of 0.170 M I_2 and 0.170 M I_2 are allowed to equilibrate, what is the equilibrium concentration of HI?
 - a. 0.0445 M
 - b. 0.0891 M
 - c. 0.0684 M
 - d. 0.0706 M
 - e. 0.0129 M
- 9. Which of the following is never a Brønsted-Lowry acid in an aqueous solution?
 - a. hydrogen monochloride, HCl(g)
 - b. dihydrogen monosulfide, H₂S(g)
 - ammonium chloride, NH₄Cl(s)
 - d. hydrogen monofluoride, HF(g)
 - e. sodium perchlorate, NaClO₄(s)
- 10. What is the conjugate base of $[Cr(H_2O)_6]^{3+}(aq)$?
 - a. H₃O⁺
 - b. $[Cr(H_2O)_5OH]^{2+}$
 - c. $[Cr(H_2O)_5H_3O]^{4+}$
 - d. $[Cr(H_2O)_6]^{2+}$
 - e. $[Cr(H_2O)_5]^{3+}$

- 11. At 25 °C, what is the H₃O⁺ concentration in 0.044 M NaOH(aq)?
 - a. $4.4 \times 10^{-16} \text{ M}$
 - b. $2.3 \times 10^{-13} \text{ M}$
 - c. $4.4 \times 10^{-7} \text{ M}$
 - d. 1.36 M
 - e. 12.6 M
- 12. Assuming equal initial concentrations of the given species, which of the following weak acids has the strongest conjugate base in an aqueous solution?
 - a. acetic acid, $K_a = 1.8 \times 10^{-5}$
 - b. formic acid, $K_a = 1.8 \times 10^{-4}$
 - c. hydrogen sulfite ion, $K_a = 6.2 \times 10^{-8}$
 - d. nitrous acid, $K_a = 4.5 \times 10^{-4}$
 - e. phosphoric acid, $K_a = 7.5 \times 10^{-3}$
- 13. Given the following acid dissociation constants,

$$K_a \text{ (HF)} = 7.2 \times 10^{-4}$$

$$K_a (NH_4^+) = 5.6 \times 10^{-10}$$

determine the equilibrium constant for the reaction below at 25 °C.

$$HF(aq) + NH_3(aq) \rightleftharpoons NH_4^+(aq) + F^-(aq)$$

- a. 4.0×10^{-13}
- b. 1.3×10^{-8}
- c. 7.8×10^{-7}
- d. 1.3×10^6
- e. 2.5×10^{12}
- 14. What is the pH of 5.0×10^{-3} M HF? The K_a for hydrofluoric acid is 7.2×10^{-4} . Hint: Is 100*K < C?
 - a. 2.72
 - b. 2.80
 - c. 4.60
 - d. 5.44
 - e. 6.12
- 15. A solution is made by diluting 0.50 mol NaClO to a volume of 3.0 L with water. What is the pH of the solution? (K_b of ClO⁻¹ = 2.9×10^{-7})
 - a. 3.66
 - b. 7.46
 - c. 10.34
 - d. 10.58
 - e. 13.22

16.	What is the effect of adding	10 mL	of 0.1	M NaOH(aq)	to 100 mL	of 0.2 M NH ₄ ⁺	(aq)?

- 1. The pH will decrease.
- 2. The concentration of NH₃ will increase.
- 3. The concentration of NH₄⁺ will decrease.
- a. 1 only
- b. 2 only
- c. 3 only
- d. 2 and 3
- e. 1, 2, and 3
- 17. What is the pH of a solution that results from adding 25 mL of 0.50 M NaOH to 75 mL of 0.50 M CH₃CO₂H? (Note that the K_a of $CH_3CO_2H = 1.8 \times 10^{-5}$)
 - a. 2.67
 - b. 3.17
 - c. 4.44
 - d. 5.04
 - e. 5.35
- 18. What is the pH of an aqueous solution of 0.30 M HF and 0.15 M F-? (K_a of HF = 7.2×10^{-4})
 - a. 1.83
 - b. 2.84
 - c. 3.14
 - d. 3.44
 - e. 10.86
- 19. Which of the following combinations would be best to buffer an aqueous solution at a pH of 2.0?
 - a. H_3PO_4 and $H_2PO_4^-$, $K_{a1} = 7.5 \times 10^{-3}$
 - b. HNO₂ and NO₂⁻¹, $K_a = 4.5 \times 10^{-4}$
 - c. CH_3CO_2H and CH_3COO^{-1} , $K_a = 1.8 \times 10^{-5}$
 - d. $H_2PO_4^{-1}$ and HPO_4^{2-} , $K_{a2} = 6.2 \times 10^{-8}$
 - e. NH_4^+ and NH_3 , $K_a = 5.7 \times 10^{-10}$
- 20. What is the pH of the buffer that results when 11 g of NaCH₃CO₂ is mixed with 85 mL of 1.0 M CH₃CO₂H and diluted with water to 1.0 L? (K_a of CH₃CO₂H = 1.8×10^{-5})
 - a. 2.91
 - b. 3.86
 - c. 4.55
 - d. 4.74
 - e. 4.94
- 21. The K_a of hypochlorous acid, HClO, is 3.5×10^{-8} . What [ClO⁻]/[HClO] ratio is necessary to make a buffer with a pH of 7.71?
 - a. 2.0×10^{-8}
 - b. 0.25
 - c. 0.56
 - d. 1.8
 - e. 3.9

- 22. What volume of 0.50 M NaOH should be added to 2.0 L of 0.25 M HCO_3^{-1} to make a buffer with a pH of 10.02? (Note that the pKa of $HCO_3^{-1} = 10.32$)
 - a. 0.17 mL
 - b. 83 mL
 - c. $2.5 \times 10^2 \text{ mL}$
 - d. $3.3 \times 10^2 \,\text{mL}$
 - e. $5.0 \times 10^2 \,\text{mL}$
- 23. A volume of 25.0 mL of 0.100 M HCO₂H(aq) is titrated with 0.100 M NaOH(aq). What is the pH after the addition of 12.5 mL of NaOH? (K_a for HCO₂H = 1.8×10^{-4})
 - a. 2.52
 - b. 3.74
 - c. 4.74
 - d. 7.00
 - e. 10.26
- 24. A 50.0 mL sample of 0.0240 M NH₃(aq) is titrated with aqueous hydrochloric acid. What is the pH after the addition of 15.0 mL of 0.0600 M HCl(aq)? (K_b of NH₃ = 1.8×10^{-5})
 - a. 8.78
 - b. 8.86
 - c. 9.25
 - d. 9.38
 - e. 9.73
- 25. Which is the best colored indicator to use in the titration of $0.0010 \text{ M CH}_3\text{CO}_2^{-1}(\text{aq})$ with HCl(aq)? Why? (Note that the K_b of $\text{CH}_3\text{CO}_2^{-1} = 5.6 \times 10^{-10}$)

Indicator	pK_{a}	
Bromocresol green	4.7	
Phenol Red	7.8	
Phenolphthalein	9.0	

- a. Bromocresol green. The pH at the equivalence point is less than 7.0.
- b. Phenol Red. The pK_b of acetate ion and the pK_b of the indicator are similar.
- c. Phenol Red. The equivalence point of an acid-base titration occurs at a pH of 7.0.
- d. Phenolphthalein. The pK_b of acetate ion and the pK_b of the indicator are similar.
- e. Phenolphthalein. The pH at the equivalence point is greater than 7.0.

OH 223 Sumple Exam	
Part II: Short Answer / Calculation. Show all work!	
1. Consider a 1.00 L solution which is 0.700 M CH ₃ CO ₂ H and	$d 0.600 \text{ M NaCH}_3\text{CO}_2$. $K_a = 1.8*10^{-5}$
a. What is the pH of the initial solution?	
b. Calculate the pH upon adding 10.00 mL of 1.00 M	HCl to the solution from part a.
c. Calculate the pH upon adding 15.00 mL of 2.10 M l	NaOH to the solution from part a.
	kJ Use Le Chatelier's principle to predict the effect of the following
changes on this reaction at equilibrium. Write RIGHT, LE	
A LUC COLL	<u>Effect</u>
Addition of B ₂ H ₆ :	
Addition of a catalyst:	
Increasing the pressure:	:

Removal of BH₃:

Increasing temperature:

A so	blution contains 50.0 mL of 0.100 M acetic acid (CH ₃ CO ₂ H). $K_a = 1.8 \times 10^{-5}$
a.	What is the pH of the initial acetic acid solution?
b.	What is the pH after 10.0 mL of 0.100 M NaOH has been added to the mixture?
c.	What is the pH after 40.0 mL of 0.100 M NaOH has been added to the mixture?
d.	How many mL of 0.100 M NaOH are required to reach the equivalence point?
e. hal	How many mL of 0.100 M NaOH are required to reach the half-equivalence point? What is the pH of the solution at the f-equivalence point?
f.	What is the pH at the equivalence point?
g.	What is the pH after 60.0 mL of 0.100 M NaOH has been added to the mixture?