\qquad
\qquad
Part I: Multiple Choice Questions (100 Points) There is only one best answer for each question.

1. Write the expression for K for the reaction: $\mathbf{A l}_{2} \mathbf{S}_{\mathbf{3}}(\mathbf{s}) \rightleftharpoons \mathbf{2} \mathbf{A l}^{\mathbf{3 +}}(\mathbf{a q})+\mathbf{3} \mathbf{S}^{\mathbf{2 -}(\mathrm{aq})}$
a.

$$
K=\left[\mathrm{Al}^{3+}\right]^{2}\left[\mathrm{~S}^{2-}\right]^{3}
$$

b. $K=\left[\mathrm{Al}^{3+}\right]\left[\mathrm{S}^{2-}\right]$
c. $K=\left[2 \mathrm{Al}^{3+}\right]\left[3 \mathrm{~S}^{2-}\right]$
d.
$K=\frac{\left[\mathrm{Al}_{2} \mathrm{~S}_{3}\right]}{\left[\mathrm{Al}^{3+}\right]^{2}\left[\mathrm{~S}^{2-}\right]^{3}}$
e.

$$
K=\frac{\left[\mathrm{Al}^{3+}\right]^{2}\left[\mathrm{~S}^{2-}\right]^{3}}{\left[\mathrm{Al}_{2} \mathrm{~S}_{3}\right]}
$$

2. Write the expression for K_{p} for the reaction: $\mathbf{2} \mathbf{H B r}(\mathbf{g}) \rightleftharpoons \mathbf{H}_{2}(\mathbf{g})+\mathbf{B r}_{2}(\mathbf{l})$
a.
$K_{\mathrm{p}}=\frac{P_{\mathrm{HBr}}^{2}}{P_{\mathrm{Br}_{2}} P_{\mathrm{H}_{2}}}$
b.

$$
K_{\mathrm{p}}=\frac{P_{\mathrm{H}_{2}}}{P_{\mathrm{HBr}}^{2}}
$$

c. $\quad K_{\mathrm{p}}=P_{\mathrm{HBr}}^{2}$
$K_{\mathrm{p}}=\frac{P_{\mathrm{HBr}}^{2}}{P_{\mathrm{H}_{2}}}$
e. $K_{\mathrm{p}}=\frac{P_{\mathrm{H}_{2}} P_{\mathrm{Br}_{2}}}{P_{\mathrm{HBr}}^{2}}$
3. A 4.00 L flask is filled with $0.75 \mathrm{~mol} \mathrm{SO}_{3}, 2.50 \mathrm{~mol} \mathrm{SO}_{2}$, and $1.30 \mathrm{~mol} \mathrm{O}_{2}$, and allowed to reach equilibrium. Predict the effect on the concentrations of SO_{3} as equilibrium is achieved by using Q , the reaction quotient. Assume the temperature of the mixture is chosen so that $\mathrm{K}_{\mathrm{c}}=12.2 \mathrm{SO}_{\mathbf{3}}(\mathrm{g}) \rightleftharpoons 2 \mathrm{SO}_{\mathbf{2}}(\mathrm{g})+\mathbf{O}_{\mathbf{2}}(\mathrm{g})$
a. $\left[\mathrm{SO}_{3}\right]$ will decrease because $\mathrm{Q}>\mathrm{K}$.
b. $\left[\mathrm{SO}_{3}\right]$ will decrease because $\mathrm{Q}<\mathrm{K}$.
c. $\left[\mathrm{SO}_{3}\right]$ will increase because $\mathrm{Q}<\mathrm{K}$.
d. $\left[\mathrm{SO}_{3}\right]$ will increase because $\mathrm{Q}>\mathrm{K}$.
e. $\left[\mathrm{SO}_{3}\right]$ will remain the same because $\mathrm{Q}=\mathrm{K}$.
4. This reaction below is studied at a high temperature. $\mathbf{P C l}_{\mathbf{5}}^{\mathbf{(g})} \rightleftharpoons \mathbf{P C l}_{\mathbf{3}}(\mathbf{g})+\mathbf{C l}_{\mathbf{2}} \mathbf{(g)}$ At equilibrium, the partial pressures of the gases are as follows: $\mathrm{PCl}_{5}=1.8 \times 10^{-2} \mathrm{~atm}, \mathrm{PCl}_{3}=5.6 \times 10^{-2} \mathrm{~atm}$, and $\mathrm{Cl}_{2}=3.8 \times 10^{-4} \mathrm{~atm}$. What is the value of K_{p} for the reaction?
a. $\quad 3.8 \times 10^{-7}$
b. 1.2×10^{-3}
c. 3.1
d. 8.5×10^{2}
e. 2.6×10^{6}
5. A sealed tube is prepared with $1.07 \mathrm{~atm} \mathrm{PCl}_{5}$ at 500 K . The PCl_{5} decomposes until equilibrium is established; 1.54 atm is the equilibrium pressure of the tube. Calculate K_{p} using the equation: $\mathbf{P C l}_{\mathbf{5}}(\mathbf{g}) \rightleftharpoons \mathbf{P C l}_{\mathbf{3}}(\mathbf{g})+\mathbf{C l}_{\mathbf{2}}(\mathbf{g})$
a. 0.052
b. 0.20
c. 0.27
d. 0.37
e. 2.2
6. Hydrogen monoiodide can decompose into hydrogen and iodine gases: $\mathbf{2} \mathbf{H I}(\mathbf{g}) \rightleftharpoons \mathbf{H}_{\mathbf{2}}(\mathbf{g})+\mathbf{I}_{\mathbf{2}}(\mathbf{g}) \quad \mathbf{K}_{\mathbf{p}}=\mathbf{0 . 0 1 6}$ at $-17{ }^{\circ} \mathrm{C}$. If 0.820 atm of $\mathrm{HI}(\mathrm{g})$ is sealed in a flask at $-17^{\circ} \mathrm{C}$, what is the pressure of each gas when equilibrium is established?
a. $\mathrm{HI}=0.576 \mathrm{~atm}, \mathrm{H}_{2}=0.096 \mathrm{~atm}, \mathrm{I}_{2}=0.096 \mathrm{~atm}$
b. $\mathrm{HI}=0.654 \mathrm{~atm}, \mathrm{H}_{2}=0.083 \mathrm{~atm}, \mathrm{I}_{2}=0.083 \mathrm{~atm}$
c. $\mathrm{HI}=0.728 \mathrm{~atm}, \mathrm{H}_{2}=0.092 \mathrm{~atm}, \mathrm{I}_{2}=0.092 \mathrm{~atm}$
d. $\mathrm{HI}=0.737 \mathrm{~atm}, \mathrm{H}_{2}=0.083 \mathrm{~atm}, \mathrm{I}_{2}=0.083 \mathrm{~atm}$
e. $\mathrm{HI}=0.768 \mathrm{~atm}, \mathrm{H}_{2}=0.111 \mathrm{~atm}, \mathrm{I}_{2}=0.111 \mathrm{~atm}$
7. Using the chemical reactions below, determine the equilibrium constant for the following reaction:

$$
\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq})
$$

$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$

$$
K=6.5 \times 10^{-6}
$$

$\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
$K=1.0 \times 10^{-14}$
a. $\quad 1.5 \times 10^{-23}$
b. $\quad 6.5 \times 10^{-20}$
c. $\quad 1.3 \times 10^{-19}$
d. 1.5×10^{-9}
e. 1.5×10^{19}
8. Hydrogen and iodine react to form hydrogen monoiodide according to: $\mathbf{H}_{\mathbf{2}}(\mathbf{g})+\mathbf{I}_{\mathbf{2}}(\mathbf{g}) \rightleftharpoons \mathbf{2} \mathbf{~ H I}(\mathbf{g}) \quad \mathbf{K}_{\mathbf{c}}=\mathbf{0 . 5 0 4}$ at $25^{\circ} \mathrm{C}$. If initial concentrations of $0.170 \mathrm{M} \mathrm{H}_{2}$ and $0.170 \mathrm{M} \mathrm{I}_{2}$ are allowed to equilibrate, what is the equilibrium concentration of HI ?
a. $\quad 0.0445 \mathrm{M}$
b. 0.0891 M
c. $\quad 0.0684 \mathrm{M}$
d. 0.0706 M
e. $\quad 0.0129 \mathrm{M}$
9. Which of the following is never a Brønsted-Lowry acid in an aqueous solution?
a. hydrogen monochloride, $\mathrm{HCl}(\mathrm{g})$
b. dihydrogen monosulfide, $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
c. ammonium chloride, $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$
d. hydrogen monofluoride, $\mathrm{HF}(\mathrm{g})$
e. sodium perchlorate, $\mathrm{NaClO}_{4}(\mathrm{~s})$
10. What is the conjugate base of $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}(\mathrm{aq})$?
a. $\mathrm{H}_{3} \mathrm{O}^{+}$
b. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}\right]^{2+}$
c. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{H}_{3} \mathrm{O}\right]^{4+}$
d. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
e. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right) 5\right]^{3+}$
11. At $25^{\circ} \mathrm{C}$, what is the $\mathrm{H}_{3} \mathrm{O}^{+}$concentration in $0.044 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$?
a. $\quad 4.4 \times 10^{-16} \mathrm{M}$
b. $\quad 2.3 \times 10^{-13} \mathrm{M}$
c. $\quad 4.4 \times 10^{-7} \mathrm{M}$
d. 1.36 M
e. 12.6 M
12. Assuming equal initial concentrations of the given species, which of the following weak acids has the strongest conjugate base in an aqueous solution?
a. acetic acid, $\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}$
b. formic acid, $\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-4}$
c. hydrogen sulfite ion, $\mathrm{K}_{\mathrm{a}}=6.2 \times 10^{-8}$
d. nitrous acid, $\mathrm{K}_{\mathrm{a}}=4.5 \times 10^{-4}$
e. phosphoric acid, $\mathrm{K}_{\mathrm{a}}=7.5 \times 10^{-3}$
13. Given the following acid dissociation constants,
$K_{\mathrm{a}}(\mathrm{HF})=7.2 \times 10^{-4}$
$K_{\mathrm{a}}\left(\mathrm{NH}_{4}^{+}\right)=5.6 \times 10^{-10}$
determine the equilibrium constant for the reaction below at $25^{\circ} \mathrm{C}$.
$\mathbf{H F}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) \rightleftharpoons \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq})$
a. $\quad 4.0 \times 10^{-13}$
b. $\quad 1.3 \times 10^{-8}$
c. 7.8×10^{-7}
d. 1.3×10^{6}
e. 2.5×10^{12}
14. What is the pH of $5.0 \times 10^{-3} \mathrm{M} \mathrm{HF}$? The K_{a} for hydrofluoric acid is 7.2×10^{-4}. Hint: Is $100^{*} K<C$?
a. $\quad 2.72$
b. 2.80
c. $\quad 4.60$
d. 5.44
e. 6.12
15. A solution is made by diluting 0.50 mol NaClO to a volume of 3.0 L with water. What is the pH of the solution? $\left(\mathrm{K}_{\mathrm{b}}\right.$ of $\mathrm{ClO}^{-1}=$ 2.9×10^{-7})
a. 3.66
b. 7.46
c. $\quad 10.34$
d. 10.58
e. $\quad 13.22$
16. What is the effect of adding 10 mL of $0.1 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ to 100 mL of $0.2 \mathrm{M} \mathrm{NH}_{4}^{+}(\mathrm{aq})$?

1. The pH will decrease.
2. The concentration of NH_{3} will increase.
3. The concentration of $\mathrm{NH}_{4}{ }^{+}$will decrease.
a. 1 only
b. 2 only
c. 3 only
d. 2 and 3
e. 1,2 , and 3
4. What is the pH of a solution that results from adding 25 mL of 0.50 M NaOH to 75 mL of $0.50 \mathrm{M} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$? (Note that the K_{a} of $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}=1.8 \times 10^{-5}$)
a. 2.67
b. $\quad 3.17$
c. 4.44
d. 5.04
e. 5.35
5. What is the pH of an aqueous solution of 0.30 M HF and $0.15 \mathrm{M} \mathrm{F}^{-}$? $\left(\mathrm{K}_{\mathrm{a}}\right.$ of $\left.\mathrm{HF}=7.2 \times 10^{-4}\right)$
a. $\quad 1.83$
b. 2.84
c. $\quad 3.14$
d. 3.44
e. 10.86
6. Which of the following combinations would be best to buffer an aqueous solution at a pH of 2.0 ?
a. $\quad \mathrm{H}_{3} \mathrm{PO}_{4}$ and $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{K}_{\mathrm{a} 1}=7.5 \times 10^{-3}$
b. $\quad \mathrm{HNO}_{2}$ and $\mathrm{NO}_{2}^{-1}, \mathrm{~K}_{\mathrm{a}}=4.5 \times 10^{-4}$
c. $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ and $\mathrm{CH}_{3} \mathrm{COO}^{-1}, \mathrm{~K}_{\mathrm{a}}=1.8 \times 10^{-5}$
d. $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-1}$ and $\mathrm{HPO}_{4}{ }^{2-}, \mathrm{K}_{\mathrm{a} 2}=6.2 \times 10^{-8}$
e. NH_{4}^{+}and $\mathrm{NH}_{3}, \mathrm{~K}_{\mathrm{a}}=5.7 \times 10^{-10}$
7. What is the pH of the buffer that results when 11 g of $\mathrm{NaCH}_{3} \mathrm{CO}_{2}$ is mixed with 85 mL of $1.0 \mathrm{M} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ and diluted with water to 1.0 L ? $\left(\mathrm{K}_{\mathrm{a}}\right.$ of $\left.\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}=1.8 \times 10^{-5}\right)$
a. 2.91
b. 3.86
c. 4.55
d. 4.74
e. 4.94
8. The K_{a} of hypochlorous acid, HClO , is 3.5×10^{-8}. What $\left[\mathrm{ClO}^{-}\right] /[\mathrm{HClO}]$ ratio is necessary to make a buffer with a pH of 7.71 ?
a. $\quad 2.0 \times 10^{-8}$
b. 0.25
c. 0.56
d. 1.8
e. 3.9
9. What volume of 0.50 M NaOH should be added to 2.0 L of $0.25 \mathrm{M} \mathrm{HCO}_{3}{ }^{-1}$ to make a buffer with a pH of 10.02 ? (Note that the $\mathrm{pKa}_{\mathrm{a}}$ of $\mathrm{HCO}_{3}{ }^{-1}=10.32$)
a. $\quad 0.17 \mathrm{~mL}$
b. 83 mL
c. $2.5 \times 10^{2} \mathrm{~mL}$
d. $\quad 3.3 \times 10^{2} \mathrm{~mL}$
e. $5.0 \times 10^{2} \mathrm{~mL}$
10. A volume of 25.0 mL of $0.100 \mathrm{M} \mathrm{HCO}_{2} \mathrm{H}(\mathrm{aq})$ is titrated with $0.100 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$. What is the pH after the addition of 12.5 mL of $\mathrm{NaOH} ?\left(\mathrm{~K}_{\mathrm{a}}\right.$ for $\left.\mathrm{HCO}_{2} \mathrm{H}=1.8 \times 10^{-4}\right)$
a. 2.52
b. $\quad 3.74$
c. 4.74
d. 7.00
e. 10.26
11. A 50.0 mL sample of $0.0240 \mathrm{M} \mathrm{NH}_{3}(\mathrm{aq})$ is titrated with aqueous hydrochloric acid. What is the pH after the addition of 15.0 mL of $0.0600 \mathrm{M} \mathrm{HCl}(\mathrm{aq}) ?\left(\mathrm{~K}_{\mathrm{b}}\right.$ of $\left.\mathrm{NH}_{3}=1.8 \times 10^{-5}\right)$
a. $\quad 8.78$
b. 8.86
c. 9.25
d. 9.38
e. 9.73
12. Which is the best colored indicator to use in the titration of $0.0010 \mathrm{M} \mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-1}(\mathrm{aq})$ with $\mathrm{HCl}(\mathrm{aq})$? Why? (Note that the K_{b} of $\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-1}=5.6 \times 10^{-10}$)

Indicator	$\mathrm{p} K_{\mathrm{a}}$
Bromocresol green	4.7
Phenol Red	7.8
Phenolphthalein	9.0

a. Bromocresol green. The pH at the equivalence point is less than 7.0.
b. Phenol Red. The pK_{b} of acetate ion and the pK_{b} of the indicator are similar.
c. Phenol Red. The equivalence point of an acid-base titration occurs at a pH of 7.0.
d. Phenolphthalein. The pK_{b} of acetate ion and the pK_{b} of the indicator are similar.
e. Phenolphthalein. The pH at the equivalence point is greater than 7.0.

Part II: Short Answer / Calculation. Show all work!

1. Consider a 1.00 L solution which is $0.700 \mathrm{M} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ and $0.600 \mathrm{M} \mathrm{NaCH}_{3} \mathrm{CO}_{2} . \mathrm{K}_{\mathrm{a}}=1.8^{*} 10^{-5}$
a. What is the pH of the initial solution?
b. Calculate the pH upon adding 10.00 mL of 1.00 M HCl to the solution from part a .
c. Calculate the pH upon adding 15.00 mL of 2.10 M NaOH to the solution from part a.
2. Consider the reaction: $\mathbf{B}_{2} \mathbf{H}_{\mathbf{6}}(\mathbf{g}) \rightleftharpoons 2 \mathbf{B H}_{\mathbf{3}}(\mathbf{g}), \Delta \mathbf{H}=+\mathbf{1 1 2} \mathbf{k J}$ Use Le Chatelier's principle to predict the effect of the following changes on this reaction at equilibrium. Write RIGHT, LEFT or NO CHANGE to indicate the effect observed.

Effect
Addition of $\mathrm{B}_{2} \mathrm{H}_{6}$:

Addition of a catalyst:
\qquad
,
\qquad
Increasing the pressure: \qquad
Removal of BH_{3} :
Increasing temperature:
\qquad
\qquad
3. A solution contains 50.0 mL of 0.100 M acetic acid $\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right) . \mathrm{K}_{\mathrm{a}}=1.8^{*} 10^{-5}$
a. What is the pH of the initial acetic acid solution?
b. What is the pH after 10.0 mL of 0.100 M NaOH has been added to the mixture?
c. What is the pH after 40.0 mL of 0.100 M NaOH has been added to the mixture?
d. How many mL of 0.100 M NaOH are required to reach the equivalence point?
e. How many mL of 0.100 M NaOH are required to reach the half-equivalence point? What is the pH of the solution at the half-equivalence point?
f. What is the pH at the equivalence point?
g. What is the pH after 60.0 mL of 0.100 M NaOH has been added to the mixture?

