The Nernst Equation

Not all systems are at equilibrium when measured. Slow kinetics, adding or removing of substrate, and other factors can keep the system from attaining equilibrium - for a while.

Values of E^o are applicable *only* to equilibrium conditions. To calculate cell potentials for nonequilibrium systems, we use the **Nernst Equation**:

$$E = E^{\circ} - (RT/nF) \ln O$$

where

E = cell potential (V) at nonstandard conditions

 E^{o} = cell potential (V) at standard equilibrium conditions

R = Gas constant (8.314 J/K mol)

T = Temperature (K)

 $F = Faraday constant (96,485 C/mol e^{-})$

n = the number of moles of electrons transferred

Q = reaction quotient; for the reaction: a $A_{(aq)}$ + b $B_{(aq)}$ <=> c $C_{(aq)}$ + d $D_{(aq)}$,

then
$$Q = \frac{[C]^c[D]^d}{[A]^a[B]^b}$$

Find **E** when $[Zn^{2+}] = 0.0010 \text{ M}$, $P(H_2) = 0.10 \text{ atm}$ and pH = 0 at 298 K. Example:

$$[\mathbf{H}^+] = 10^{-pH} \mathbf{M} = 10^{-0} \mathbf{M} = 1.0 \mathbf{M}$$
; note that $\mathbf{n} = 2$

$$2 H_{(aq)}^{+} + Z n_{(s)}^{---} > Z n_{(aq)}^{2+} + H_{2(g)}$$
 $E_{net}^{0} = 0.76 V$

Use the Nernst equation to find E:

$$E = E^{o} - (RT/nF) \ln Q$$

$$Q = \frac{\left[Zn^{2+}\right]P_{H_2}}{\left[H^+\right]^2} = \left[0.0010 * 0.10 / (1.0)^2\right] = 0.00010$$

$$E = 0.76 \text{ V} - (8.314 * 298 \text{ K} / 2 * 96500) \ln 0.00010$$

 $E = 0.76 \text{ V} + 0.12 \text{ V} = \textbf{0.88 V}$