(" $q \& d$ ") Redox Reactions Guide for CH 223

"q\&d" = "Quick 'n' Dirty"

Part I: General Instructions - for reactions where pH is not important

1) Recognize that the reaction is an oxidation-reduction reaction. Look for changes in oxidation number on similar atoms in both the reactant and product side.

Example: $\quad \mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(1)}+\mathrm{NaCl}$ not an oxidation-reduction reaction Example: $\quad \mathrm{Ag}^{+}+\mathrm{Cu}_{(\mathrm{s})}->\mathrm{Ag}_{(\mathrm{s})}+\mathrm{Cu}^{2+} \quad$ oxidation-reduction
2) Separate the process into two half-reactions. One side will be a reduction and the other will be an oxidation.

Example: $\quad \mathrm{Ag}^{+}->\mathrm{Ag}_{(\mathrm{s})}$

$$
\mathrm{Cu}_{(\mathrm{s})}->\mathrm{Cu}^{2+}
$$

3) Balance each half-reaction for mass (atoms) and charge (using electrons).

Example: $\quad \mathrm{Ag}^{+}+\mathrm{e}^{-}->\mathrm{Ag}_{(\mathrm{s})} \quad$ reduction
$\mathrm{Cu}_{(\mathrm{s})}->\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \quad$ oxidation
4) Multiply each half-reaction by a factor that makes the number of electrons equal.

$$
\begin{array}{ll}
\text { Example: } & \mathrm{Ag}^{+}+\mathrm{e}^{-}->\mathrm{Ag}_{(\mathrm{s})} \\
& \mathrm{Cu}_{(\mathrm{s})}->\mathrm{Cu}^{2+}+2 \mathrm{e}^{-}
\end{array}
$$

If we multiply the first reaction by $\mathbf{2}$ and the second reaction by $\mathbf{1}$, the number of electrons in each half-reaction will be equal.
$2 \mathrm{Ag}^{+}+2 \mathrm{e}^{-}->2 \mathrm{Ag}_{(\mathrm{s})}$
$\mathrm{Cu}_{(\mathrm{s})}->\mathrm{Cu}^{2+}+2 \mathrm{e}^{-}$
5) Add the two half-reactions to create the overall balanced equation. The equation should be balanced for mass and devoid of electrons.

$$
\begin{array}{ll}
\text { Example: } & 2 \mathrm{Ag}^{+}+2 \mathrm{e}^{-}->2 \mathrm{Ag}_{(\mathrm{s})} \\
& \mathrm{Cu}_{(\mathrm{s})}->\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \\
& -\cdots--------------\mathbf{A g}_{(\mathrm{s})}+\mathbf{C u}^{2+}
\end{array}
$$

6) Confirm that mass and charge are balanced in the overall equation.

Example: 2 silver atoms on reactant and product side
1 copper atom on reactant and product side mass balanced
$2(+1)=+2$ charge on reactant side +2 charge on product side charge balanced

Part II: Acidic Conditions - for reactions where pH<7

1) Recognize that the reaction is an oxidation-reduction reaction. Look for changes in oxidation number on similar atoms in both the reactant and product side.

$$
\text { Example: } \quad \mathrm{VO}_{2}^{+}+\mathrm{Zn}_{(\mathrm{s})}->\mathrm{VO}^{2+}+\mathrm{Zn}^{2+} \quad \text { oxidation-reduction }
$$

2) Separate the process into two half-reactions. One side will be a reduction and the other will be an oxidation.

$$
\begin{array}{ll}
\text { Example: } & \mathrm{VO}_{2}^{+}->\mathrm{VO}^{2+} \\
& \mathrm{Zn}_{(\mathrm{s})}->\mathrm{Zn}^{2+}
\end{array}
$$

3) Balance each half-reaction for mass (atoms) and charge (using electrons). Note that in acidic solution, mass can be balanced by using water and H^{+}if appropriate. Water will go to the side that is oxygen deficient, and hydrogen ions will go to the side that is hydrogen deficient. Some halfreactions will not need any water or hydrogen ions.
```
Example: \(\quad 2 \mathrm{H}^{+}+\mathrm{VO}_{2}^{+}+\mathrm{e}^{-}->\mathrm{VO}^{2+}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \quad\) reduction
    \(\mathrm{Zn}_{(\mathrm{s})}->\mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \quad\) oxidation
```

4) Multiply each half-reaction by a factor that makes the number of electrons equal.

$$
\begin{array}{ll}
\text { Example: } & 2 \mathrm{H}^{+}+\mathrm{VO}_{2}^{+}+\mathrm{e}^{-}->\mathrm{VO}^{2+}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \\
& \mathrm{Zn}_{(\mathrm{s})}->\mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \\
& \text {If we multiply the first reaction by } \mathbf{2} \text { and the second reaction by } \mathbf{1} \text {, the number } \\
& \text { of electrons in each half-reaction will be equal. } \\
& 4 \mathrm{H}^{+}+2 \mathrm{VO}_{2}^{+}+2 \mathrm{e}^{-}->2 \mathrm{VO}^{2+}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \\
& \mathrm{Zn}_{(\mathrm{s})}->\mathrm{Zn}^{2+}+2 \mathrm{e}^{-}
\end{array}
$$

5) Add the two half-reactions to create the overall balanced equation. The equation should be balanced for mass \& devoid of electrons. Cancel water and/or protons if present on both sides of the equation.

$$
\begin{aligned}
& \text { Example: } \quad 4 \mathrm{H}^{+}+2 \mathrm{VO}_{2}^{+}+2 \mathrm{e}^{-}->2 \mathrm{VO}^{2+}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \\
& \mathrm{Zn}_{(\mathrm{s})}->\mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \\
& 4 \mathrm{H}^{+}+2 \mathrm{VO}_{2}^{+}+\mathrm{Zn}_{(\mathrm{s})}->2 \mathrm{VO}^{2+}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{Zn}^{2+}
\end{aligned}
$$

6) Confirm that mass and charge are balanced in the overall equation.

Example: 4 hydrogen atoms on each side
2 vanadium atoms on each side
4 oxygen atoms on each side
1 zinc atom on each side
mass balanced
$4(+1)+2(+1)=+6$ charge on reactant side
$2(+2)+2=+6$ charge on product side
charge balanced

Part III: Basic Conditions - for reactions where $\mathrm{pH}>7$

1) Recognize that the reaction is an oxidation-reduction reaction. Look for changes in oxidation number on similar atoms in both the reactant and product side.

Example: $\quad \mathrm{MnO}_{4}^{-}+\mathrm{HO}_{2}^{-}->\mathrm{MnO}_{4}{ }^{2-}+\mathrm{O}_{2} \quad$ oxidation-reduction
2) Separate the process into two half-reactions. One will be a reduction and the other an oxidation.

Example: $\quad \mathrm{MnO}_{4}^{-}->\mathrm{MnO}_{4}{ }^{2-}$
$\mathrm{HO}_{2}^{-}->\mathrm{O}_{2}$
3) Balance each half-reaction for mass (atoms) and charge (using electrons). Note that in basic solution, mass can be balanced by using water and OH^{-}if appropriate. Hydroxide will go to the side that is oxygen deficient, and water will go to the side that is hydrogen deficient. Some half-reactions will not need any water or hydrogen ions.

```
Example: \(\quad \mathrm{MnO}_{4}^{-}+\mathrm{e}^{-}->\mathrm{MnO}_{4}{ }^{2-}\) reduction
\(\mathrm{OH}^{-}+\mathrm{HO}_{2}^{-}->\mathrm{O}_{2}+2 \mathrm{e}^{-}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})} \quad\) oxidation
```

4) Multiply each half-reaction by a factor that makes the number of electrons equal.
```
Example: \(\quad \mathrm{MnO}_{4}^{-}+\mathrm{e}^{-}->\mathrm{MnO}_{4}{ }^{2-}\)
    \(\mathrm{OH}^{-}+\mathrm{HO}_{2}^{-}->\mathrm{O}_{2}+2 \mathrm{e}^{-}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}\)
```

 If we multiply the first reaction by \(\mathbf{2}\) and the second reaction by \(\mathbf{1}\), the number
 of electrons in each half-reaction will be equal.
 $2 \mathrm{MnO}_{4}^{-}+2 \mathrm{e}^{-}->2 \mathrm{MnO}_{4}^{2-}$
$\mathrm{OH}^{-}+\mathrm{HO}_{2}^{-}->\mathrm{O}_{2}+2 \mathrm{e}^{-}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
5) Add the two half-reactions to create the overall balanced equation. The equation should be balanced for mass and devoid of electrons. Cancel water and/or hydroxide if present on both sides of the equation.

$$
\begin{array}{ll}
\text { Example: } & 2 \mathrm{MnO}_{4}^{-}+2 \mathrm{e}^{-}->2 \mathrm{MnO}_{4}^{2-} \\
& \mathrm{OH}^{-}+\mathrm{HO}_{2}^{-}->\mathrm{O}_{2}+2 \mathrm{e}^{-}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \\
& ----------------\mathbf{M n O}_{4}^{2-}+\mathbf{O}_{2}+\mathbf{H}_{2} \mathbf{O}_{(\mathrm{I})}
\end{array}
$$

6) Confirm that mass and charge are balanced in the overall equation.

Example: 2 manganese atoms on each side
11 oxygen atoms on each side
2 hydrogen atoms on each side - mass balanced
$2(-1)+(-1)+(-1)=-4$ charge on reactant side
$2(-2)=-4$ charge on product side - charge balanced
7) Alternatively, you may balance basic redox reactions using the acidic process used in Part II. Upon completing step 5 , add OH^{-}to neutralize any H^{+}present. Add a similar amount of OH^{-}to both sides. All of the H^{+}will be converted to $\mathrm{H}_{2} \mathrm{O}$, and the opposite side should have OH^{-}present.

