("q&d") Redox Reactions Guide for CH 223

"q&d" = "Quick 'n' Dirty"

Part I: General Instructions - for reactions where pH is not important

1) Recognize that the reaction is an oxidation-reduction reaction. Look for changes in oxidation number on similar atoms in both the reactant and product side.

Example: HCl + NaOH -> $H_2O_{(l)}$ + NaCl not an oxidation-reduction reaction *Example:* Ag⁺ + Cu_(s) -> Ag_(s) + Cu²⁺ oxidation-reduction

2) Separate the process into two **half-reactions**. One side will be a **reduction** and the other will be an **oxidation**.

Example:
$$Ag^+ \rightarrow Ag_{(s)}$$

 $Cu_{(s)} \rightarrow Cu^{2+}$

3) Balance each half-reaction for **mass** (atoms) and **charge** (using electrons).

Example:	$Ag^{+} + e^{-} -> Ag_{(s)}$	reduction
	$Cu_{(s)} \rightarrow Cu^{2+} + 2e^{-}$	oxidation

4) Multiply each half-reaction by a factor that makes the number of electrons equal.

5) Add the two half-reactions to create the overall balanced equation. The equation should be balanced for mass and devoid of electrons.

Example: $2 \operatorname{Ag}^{+} + 2 e^{-} > 2 \operatorname{Ag}_{(s)}$ $\operatorname{Cu}_{(s)} \rightarrow \operatorname{Cu}^{2+} + 2 e^{-}$ $2 \operatorname{Ag}^{+} + \operatorname{Cu}_{(s)} \rightarrow 2 \operatorname{Ag}_{(s)} + \operatorname{Cu}^{2+}$

- 6) Confirm that mass and charge are balanced in the overall equation.
 - Example: 2 silver atoms on reactant and product side 1 copper atom on reactant and product side mass balanced
 2(+1) = +2 charge on reactant side
 +2 charge on product side charge balanced

<u>Part II</u>: Acidic Conditions - for reactions where pH < 7

1) Recognize that the reaction is an oxidation-reduction reaction. Look for changes in oxidation number on similar atoms in both the reactant and product side.

Example: $VO_2^+ + Zn_{(s)} \rightarrow VO^{2+} + Zn^{2+}$ oxidation-reduction

2) Separate the process into two **half-reactions**. One side will be a **reduction** and the other will be an **oxidation**.

Example: $VO_2^+ \rightarrow VO^{2+}$ $Zn_{(s)} \rightarrow Zn^{2+}$

3) Balance each half-reaction for mass (atoms) and charge (using electrons). Note that in *acidic solution*, mass can be balanced by using water and H⁺ if appropriate. Water will go to the side that is *oxygen deficient*, and hydrogen ions will go to the side that is *hydrogen deficient*. Some half-reactions will not need any water or hydrogen ions.

Example: $2 H^+ + VO_2^+ + e^- \rightarrow VO^{2+} + H_2O_{(1)}$ reduction $Zn_{(s)} \rightarrow Zn^{2+} + 2e^-$ oxidation

4) Multiply each half-reaction by a factor that makes the number of electrons equal.

5) Add the two half-reactions to create the overall balanced equation. The equation should be balanced for mass & devoid of electrons. Cancel water and/or protons if present on both sides of the equation.

Example: $4 H^{+} + 2 VO_{2}^{+} + 2e^{-} \rightarrow 2 VO^{2+} + 2 H_{2}O_{(1)}$ $Zn_{(s)} \rightarrow Zn^{2+} + 2e^{-}$ $4 H^{+} + 2 VO_{2}^{+} + Zn_{(s)} \rightarrow 2 VO^{2+} + 2 H_{2}O_{(1)} + Zn^{2+}$

- 6) Confirm that mass and charge are balanced in the overall equation.
 - *Example:* 4 hydrogen atoms on each side 2 vanadium atoms on each side 4 oxygen atoms on each side 1 zinc atom on each side *mass balanced* 4(+1) + 2(+1) = +6 charge on reactant side 2(+2) +2 = +6 charge on product side *charge balanced*

Page IV-17-2 / Redox Reactions

<u>Part III</u>: Basic Conditions - for reactions where pH > 7

1) Recognize that the reaction is an oxidation-reduction reaction. Look for changes in oxidation number on similar atoms in both the reactant and product side.

Example: $MnO_4^- + HO_2^- \rightarrow MnO_4^{2-} + O_2$ oxidation-reduction

2) Separate the process into two **half-reactions**. One will be a **reduction** and the other an **oxidation**.

Example:
$$MnO_4^{-} \rightarrow MnO_4^{2^-}$$

 $HO_2^{-} \rightarrow O_2$

3) Balance each half-reaction for **mass** (atoms) and **charge** (using electrons). Note that in *basic solution*, mass can be balanced by using water and OH⁻ if appropriate. Hydroxide will go to the side that is *oxygen deficient*, and water will go to the side that is *hydrogen deficient*. Some half-reactions will not need any water or hydrogen ions.

Example:	$MnO_4^- + e^> MnO_4^{2-}$	reduction
-	$OH^{-} + HO_{2}^{-} \rightarrow O_{2} + 2e^{-} + H_{2}O_{(1)}$	oxidation

- 4) Multiply each half-reaction by a factor that makes the number of electrons equal.
 - Example: $MnO_4^- + e^- \rightarrow MnO_4^{2-}$ $OH^- + HO_2^- \rightarrow O_2 + 2e^- + H_2O_{(1)}$ If we multiply the first reaction by **2** and the second reaction by **1**, the number of electrons in each half-reaction will be equal. $2 MnO_4^- + 2e^- \rightarrow 2 MnO_4^{2-}$ $OH^- + HO_2^- \rightarrow O_2 + 2e^- + H_2O_{(1)}$
- 5) Add the two half-reactions to create the overall balanced equation. The equation should be balanced for mass and devoid of electrons. Cancel water and/or hydroxide if present on both sides of the equation.

6) Confirm that mass and charge are balanced in the overall equation.

Example: 2 manganese atoms on each side 11 oxygen atoms on each side 2 hydrogen atoms on each side - *mass balanced* 2(-1) + (-1) + (-1) = -4 charge on reactant side 2(-2) = -4 charge on product side - *charge balanced*

7) Alternatively, you may balance basic redox reactions using the acidic process used in Part II. Upon completing step 5, add OH^{-} to neutralize any H^{+} present. Add a similar amount of OH^{-} to both sides. All of the H⁺ will be converted to H₂O, and the opposite side should have OH^{-} present.