The Gibbs Free Energy Equations & Relations

$\Delta \mathbf{G} = -\mathbf{T} \Delta \mathbf{S}_{\text{universe}}$	Relates Gibbs Free Energy (ΔG) with the entropy of the		
	universe ($\Delta S_{universe}$). By the second law of		
	thermodynamics, $\Delta S_{universe}$ must always increase; therefore,		
	ΔG must be negative for product favored reactions.		
$\Delta \mathbf{G} = \Delta \mathbf{H} - \mathbf{T} \Delta \mathbf{S}$	Relates ΔG to enthalpy (ΔH) and entropy (ΔS); also known as the "two headed snake" equation. Enthalpy and entropy can combine to make some reactions always product favored		
	$(\Delta G < 0)$ or always reactant favored $(\Delta G > 0)$; in addition, sometimes enthalpy and entropy "fight" one another, making		
	the final value of ΔG temperature dependent.		
$\Lambda G = -RT \ln K$	Relates ΔG with the equilibrium constant (K). R = gas		
	constant (8.3145 J K ⁻¹ mol ⁻¹), T = temperature (K). If ΔG		
	is product favored ($\Delta G < 0$), K is greater than 1; if ΔG is		
	reactant favored ($\Delta G > 0$), K is less than 1.		
$\Delta \mathbf{G} = -\mathbf{n}\mathbf{F}\mathbf{E}$	Relates ΔG with the potential of a chemical cell (E). n = number of electrons transferred, F = Faraday constant		
	(96,485 C mol ⁻¹). If ΔG is product favored ($\Delta G < 0$), E is		
	greater than 0 (positive); if ΔG is reactant favored ($\Delta G > 0$), E is less than 0 (negative).		
$\Delta \mathbf{G} = \boldsymbol{\Sigma} \Delta \mathbf{G}_{\text{products}} - \boldsymbol{\Sigma} \Delta \mathbf{G}_{\text{reactants}}$	Used to calculate the Gibbs Free Energy (ΔG) for a reaction		
	using tables of standardized ΔG values. Like enthalpy, ΔG will be zero for elements in their standard states $(O_{2(g)}, Mg_{(s)},$		
	Br _{2(l)} , etc all will have $\Delta G = 0$).		

	ΔG	K	E	$\Delta S_{universe}$
Product Favored	-	> 1	+	+
Reactant Favored	+	< 1	-	-

ΔH	ΔS	ΔG
-	+	- (always product favored)
+	-	+ (always reactant favored)
-	-	Depends on temperature, generally product favored at low T
+	+	Depends on temperature, generally product favored at high T