$\begin{array}{l} \mathbf{n_{sa}} = \text{moles of strong acid} \\ \mathbf{n_{sb}} = \text{moles of strong base} \\ \mathbf{n_{wa}} = \text{moles of weak acid} \\ \mathbf{n_{wb}} = \text{moles of weak base} \\ \mathbf{n_{ca}} = \text{moles of conjugate acid} \\ \mathbf{n_{cb}} = \text{moles of conjugate base} \end{array}$

 V_{sa} = volume of strong acid V_{sb} = volume of strong base V_{wa} = volume of weak acid V_{wb} = volume of weak base V_{ca} = volume of conjugate acid V_{cb} = volume of conjugate base

 $\begin{array}{l} \mathbf{C_{sa}} = \text{concentration of strong acid} \\ \mathbf{C_{sb}} = \text{concentration of strong base} \\ \mathbf{C_{wa}} = \text{concentration of weak acid} \\ \mathbf{C_{wb}} = \text{concentration of weak base} \\ \mathbf{C_{ca}} = \text{concentration of conjugate acid} \\ \mathbf{C_{cb}} = \text{concentration of conjugate base} \end{array}$

 K_a = acid dissociation constant for a weak acid pK_a = - log K_a K_a = 10^{-pKa}

 K_b = base dissociation constant for a weak base pK_b = - log K_b K_b = 10^{-pKb}

 $\mathbf{K}_{w} = \mathbf{10}^{-14} =$ autoionization constant for water at 25 °C Also, $\mathbf{K}_{w} = [\mathbf{H}_{3}\mathbf{O}^{+}]*[\mathbf{OH}^{-}] = \mathbf{K}_{a}*\mathbf{K}_{b} = \mathbf{10}^{-14}$

 $\mathbf{pH} = -\log\left[\mathbf{H}_{3}\mathbf{O}^{+}\right]$

 $pOH = -\log [OH^{-}]$

 $14 = pH + pOH = pK_a + pK_b$