CH 223 Guide to Le Chatelier's Principle

Le Chatelier's Principle: "If a stress is applied to a system, the system will change in a manner to reduce the stress"

	Change as Mixture Returns t Equilibrium	Effect on Equilibrium	Effect on K		
Disturbance	Some of added reactant is consumed	Shift to right (products)	No change		
Addition of Reactant	Shift to left (reactants)	No change			
Addition of Product					
Some of added product					
is consumed				\quad	Shift toward fewer gas
:---					
molecules	\quad No change				

Example: For $\mathrm{PbCl}_{2(\mathrm{~s})}<=>\mathrm{Pb}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{Cl}^{-1}{ }_{(\mathrm{aq})}, \mathrm{K}_{\mathrm{sp}}=1.7 * 10^{-5}$. If $\mathrm{Pb}^{2+}{ }_{(\mathrm{aq})}$ is added to the system at equilibrium, some of the added product will be consumed $\left(\mathrm{Pb}^{2+}\right.$ and $\left.\mathrm{Cl}^{-1}\right)$, and the reaction will shift to the left. The value of $\mathrm{K}_{\text {sp }}$ remains constant at $1.7 * 10^{-5}$.

Example: For $\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}<\Rightarrow 2 \mathrm{NO}_{(\mathrm{g})}, \Delta \mathrm{H}^{\circ}=+180.5 \mathrm{~kJ}$ and $\mathrm{K}=4.5 * 10^{-31}$ at $\mathbf{2 9 8} \mathbf{K}$. If the temperature is raised to $\mathbf{9 0 0} \mathbf{K}$, K changes to 6.7 * 10^{-10} - more product favored, heat energy is consumed, and the value of K has changed.

