CH 223 Guide to Le Chatelier's Principle

Le Chatelier's Principle: "If a stress is applied to a system, the system will change in a manner to reduce the stress"

Disturbance	Change as Mixture Returns to Equilibrium	Effect on Equilibrium	Effect on K
Addition of Reactant	Some of added reactant is consumed	Shift to right (products)	No change
Addition of Product	Some of added product is consumed	Shift to left (reactants)	No change
Decrease in Volume, Increase in Pressure, Addition of Inert Gas	Pressure increases	Shift toward fewer gas molecules	No change
Increase in Volume, Decrease in Pressure	Pressure decreases	Shift toward more gas molecules	No change
Rise in Temperature	Heat energy is consumed	Shift in the endothermic direction	Change
Drop in Temperature	Heat energy is generated	Shift in the exothermic direction	Change

Example: For $PbCl_{2(s)} \iff Pb^{2+}_{(aq)} + 2 Cl^{-1}_{(aq)}$, $K_{sp} = 1.7 * 10^{-5}$. If $Pb^{2+}_{(aq)}$ is added to the system at equilibrium, some of the added product will be consumed (Pb^{2+} and Cl^{-1}), and the reaction will shift to the left. The value of K_{sp} remains constant at 1.7 * 10⁻⁵.

Example: For $N_{2(g)} + O_{2(g)} \ll 2 NO_{(g)}$, $\Delta H^{\circ} = +180.5 \text{ kJ}$ and $K = 4.5 * 10^{-31}$ at **298 K**. If the temperature is raised to **900 K**, K changes to 6.7 * 10^{-10} - more product favored, heat energy is consumed, and the value of K has changed.