Manipulating Equilibrium Constant Expressions

Remember, for the reaction: $\quad \mathbf{a} \mathbf{A}_{(\mathrm{aq})}+\mathbf{b} \mathbf{B}_{(\mathrm{aq})} \ll \mathbf{c} \mathbf{C}_{(\mathrm{aq})}+\mathbf{d} \mathbf{D}_{(\mathrm{aq})}$,

$$
\mathbf{K}_{\mathbf{c}}=\frac{[\mathbf{C}]^{\mathbf{c}}[\mathbf{D}]^{\mathrm{d}}}{[\mathbf{A}]^{\mathrm{a}}[\mathbf{B}]^{\mathbf{b}}}
$$

- Products in numerator, reactants in denominator
- Raise the stoichiometric value to the same factor for each species present
- Only gases and dissolved species appear in equilibrium constant expressions
- Solids and liquids do not appear in equilibrium constant expressions
- Remember to watch for units!

1. Do not include solids and liquids in equilibrium calculations, only gases and dissolved species Example 1: $\quad \mathbf{C}_{(\mathrm{s})}+1_{2} \mathbf{O}_{2(\text { aq) }} \ll \mathrm{CO}_{(\mathrm{aq})}$

$$
\mathrm{K}_{1}=\frac{[\mathrm{CO}]}{\left[\mathrm{O}_{2}\right]^{1 / 2}}=4.6^{*} 10^{23} \mathrm{M}^{1 / 2} \text { at } 25^{\circ} \mathrm{C}
$$

2. If doubling reaction, square K; if tripling, cube K; etc.

Example 2: $\quad \mathbf{2 C}_{(\mathrm{s})}+\mathbf{O}_{\mathbf{2 (a q)}} \Leftrightarrow \mathbf{2} \mathbf{C O}_{(\mathrm{aq})}$

$$
\mathrm{K}_{2}=\frac{[\mathrm{CO}]^{2}}{\left[\mathrm{O}_{2}\right]}=\left(\mathrm{K}_{1}\right)^{2}=\left(\mathbf{4 . 6}{ }^{* 10} 0^{23}\right)^{2}=2.1^{*} \mathbf{1 0}^{47} \mathrm{M} \text { at } 25^{\circ} \mathrm{C}
$$

Also, if reaction*3, $\mathrm{K}=\left(\mathrm{K}_{1}\right)^{3}$; if reaction halved, $\mathrm{K}=\left(\mathrm{K}_{1}\right)^{1 / 2}$; etc.
3. If reactants and products are "flipped", take $1 / K$ for new value..

Example 3: $\quad \mathbf{C O}_{(\mathrm{aq})} \Leftrightarrow \mathrm{C}_{(\mathrm{s})}+1 / 2 \mathbf{O}_{2(\mathrm{aq})}$

$$
\mathbf{K}_{3}=\frac{\left[\mathrm{O}_{2}\right]^{1 / 2}}{[\mathbf{C O}]}=\frac{1}{\mathbf{K}_{1}}=\frac{1}{4.6 * 10^{23}}=2.2^{* 10^{-24}} \mathbf{M}^{-1 / 2} \text { at } 25^{\circ} \mathrm{C}
$$

4. Temperature changes will affect the value of K by either adding or subtracting from the original value. Example 4: $\quad \mathbf{C}_{(\mathrm{s})}+\mathbf{1} / \mathbf{2}_{\mathbf{2}(\mathrm{aq})} \Leftrightarrow \mathbf{C O}_{(\mathrm{aq})}$

$$
\mathbf{K}_{4}=\frac{[\mathrm{CO}]}{\left[\mathrm{O}_{2}\right]^{1 / 2}}=9.7^{*} 10^{23} \mathbf{M}^{1 / 2} \text { at } 37^{\circ} \mathrm{C}
$$

5. Reactions in the gas phase use K_{p} expressions which are similar to K_{c} expressions Example 5: $\quad \mathbf{C}_{(\mathrm{s})}+1_{2} \mathbf{O}_{\mathbf{2 (\mathrm { g })}} \Leftrightarrow \mathrm{CO}_{(\mathrm{g})}$

$$
\begin{aligned}
& \mathbf{K}_{5}=\frac{\mathbf{P}_{\mathbf{C O}}}{\mathbf{P}_{\mathbf{O}_{2}}^{1 / 2}}=\mathbf{K}_{\mathbf{p}}, \text { and if at } 25^{\circ} \mathrm{C}(298 \mathrm{~K}), \\
& \mathbf{K}_{\mathbf{p}}=\mathbf{K}_{\mathbf{c}}(\mathbf{R T})^{\mathrm{n}}=4.6^{*} * 10^{23}(0.082057 * 298)^{1-1 / 2}=\mathbf{2 . 3} * \mathbf{1 0}^{\mathbf{2 4}} \mathbf{a t m}^{\mathbf{1 / 2}} \\
& R=\text { gas constant, } T=\text { Kelvin temperature, } P \text { in atm }
\end{aligned}
$$

6. If adding reactions, multiply the respective K values together

$$
\begin{aligned}
& \text { Example 6: } \\
& \mathrm{C}_{(\mathrm{s})}+1 / \mathrm{O}_{2(\mathrm{aq})} \Leftrightarrow \boldsymbol{C} \boldsymbol{\theta}_{\text {(aq) }} \\
& \mathrm{K}_{1}=4.6^{*} 1^{23} \mathrm{M}^{1 / 2} \\
& \mathrm{CO}_{(\mathrm{aq})}+1_{2} \mathrm{O}_{2(\mathrm{aq})}<\mathrm{CO}_{2(\mathrm{aq})} \\
& \mathrm{K}_{6}=1.7^{*} 0^{15} \mathrm{M}^{-1 / 2} \\
& \text { net reaction: } \mathbf{C}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{aq})} \Leftrightarrow \mathbf{C O}_{2(\mathrm{aq})} \quad \mathrm{K}_{7}
\end{aligned}
$$

Assume at $25^{\circ} \mathrm{C}$:
$\mathbf{K}_{7}=\mathbf{K}_{1} * \mathbf{K}_{6}=\frac{[\mathbf{C O}]}{\left[\mathbf{O}_{2}\right]^{1 / 2}} * \frac{\left[\mathbf{C O}_{2}\right]}{\left[\mathbf{C O}\left[\mathbf{O}_{2}\right]^{1 / 2}\right.}=\left(4.6 * 10^{23}\right)\left(1.7 * 10^{15}\right)=\mathbf{7 . 8} * \mathbf{1 0}^{\mathbf{3 8}}$ unitless

