Chemical Kinetics: The Rates of Chemical Reactions

Chapter 12

Professor Michael Russell

Chemistry 222

Last update: 4/29/24 MAR

Shroud of Turin

Shroud of Jesus?!? Fake or Real? Explored with Kinetics

Chemical Kinetics

- We can use thermodynamics to tell if a reaction is product or reactant favored.
- But this gives us no info on HOW FAST reaction goes from reactants to products.
- KINETICS the study of REACTION RATES and their relation to the way the reaction proceeds, i.e., its MECHANISM.

MAR

MAR

Reaction rate is the change in concentration of a

MAR

Therm

reactant or product with time Ex: for $\mathbf{A} \rightarrow \mathbf{B}$

Reaction Rates

Reaction Rates

Reaction rate is the change in concentration of a reactant or product with time

Reactants *disappear* with time (hence, negative sign), and products *appear* with time (hence, positive sign)

Ex: for
$$N_2O_{4(g)} \rightarrow 2 NO_{2(g)}$$

$$rate = -\frac{\Delta[N_2O_4]}{\Delta t} = +\frac{1}{2}\frac{\Delta[NO_2]}{\Delta t}$$

Rates in chemistry are usually "amount per unit time", i.e. M/s, etc. MAR

Determining a Reaction Rate

MAR

Average, Instantaneous, Reaction Rates

MAR

MAR

We will use "average rate" in CH 222

Factors Affecting Rates

Concentration

Greater concentration of reactants means more collisions and faster rates

Temperature

Higher temperatures means particles collide with greater kinetic energy, increasing the rates

Surface Area

Increased surface area means greater chances for collisions and faster rates

Catalysts

Catalysts speed up reactions without being used up. They lower the activation energy and increase the rates

Factors Affecting Rates

Factors Affecting Rates

Surface area of reactants

Lycopodium powder is a yellow-tan dust-like powder consisting of the dry spores of clubmoss plants or ferns MAR

Factors Affecting Rates

Catalysts: catalyzed decomposition of H_2O_2 with MnO_2

 $2 H_2O_2(l) \longrightarrow 2 H_2O(l) + O_2(g)$

Factors Affecting Rates

Temperature

Concentrations and Rates

To postulate a reaction mechanism, we study its reaction rate and concentration dependence

MAR

Concentrations and Rates

Take reaction where CI[.] in cisplatin [Pt(NH₃)₂Cl₂] is replaced by H₂O

Rate of change of conc of Pt compd $= \frac{Am't of cisplatin reacting (mol/L)}{elapsed time (t)}$

Concentrations and Rates

 $\frac{Rate \text{ of change of conc of Pt compd}}{\frac{Am't \text{ of cisplatin reacting (mol/L)}}{\text{ elapsed time (t)}}}$

If calculated rate = 4.3 x 10⁻⁶ M s⁻¹ and [cisplatin] = 0.00250 M, then approximate time for cisplatin to react:

rate = [cisplatin] / time, and time = [cisplatin] / rate time = 0.00250 M / 4.3 x 10⁻⁶ M s⁻¹ time = 580 s

MAR

k is independent of conc. but increases with T

a A + b B ---> x X with a catalyst C

Rate = k [A]^m[B]ⁿ[C]^p

The exponents m, n, and p

- are the reaction order
- can be 0, 1, or 2 (in CH 222 CH 223!)
- · must be determined by experiment!
- overall order = m + n + p

MAR

34 ... Interpreting Rate Laws

Example: Rate = k [A] ^m If m = 1, rxn. is 1st order in A		<i>Example:</i> Derive rate law and k for CH ₃ CHO(g)> CH₄(g) + CO(g)			
Rate = k [A] ¹ If [A] doubles, then rate goes up by factor of ?	from experimental data for rate of disappearance of CH ₃ CHO				
If $m = 2$, rxn. is 2nd order in A.		Expt.	[CH₃CHO] (mol/L)	Disappear of CH₃CHO (mol/L•sec)	
Rate = $k [A]^2$		1	0.10	0.020	
Doubling [A] increases rate by ?		2	0.20	0.081	
lf m = 0, rxn. is zero order.		3	0.30	0.182	
Rate = k [A] ⁰		4	0.40	0.318	
If [A] doubles, rate ?	MAR	TI	ne rate law:	rate = k[CH₃CHO]×	

Deriving Rate Laws

Expt. [CH₃CHO] (mol/L) Rate of CH₃CHO (mol/L•sec)

1	0.10	0.020
2	0.20	0.081
3	0.30	0.182
4	0.40	0.318

Let's find the order (x) with respect to CH₃CHO Use two trials where [CH₃CHO] changes - any change in rate is caused by CH₃CHO

Apply the rate law to these two trials:

So the order of reaction for CH₃CHO is "2". We say the reaction is second order with respect to CH₃CHO

34 ... Deriving Rate Laws

😹 📥 Deriving Rate Laws

Rate of rxn = k [CH₃CHO]²

- Here the rate goes up by _____ when initial conc. doubles. Therefore, we say this reaction is order.
- Now determine the value of k. Use expt. #3 data on earlier slide.

0.182 mol/L•s = k (0.30 mol/L)²

$k = 2.0 (L / mol \cdot s)$

Using k you can calc. rate at other values of [CH₃CHO] at same T.

MAR

Concentration/Time Relations

Chemists need to know what the concentration of reactant is as function of time.

Most reactions are first order (radioactive, biological, etc.)

Let's consider FIRST ORDER REACTIONS

For 1st order reactions (1), the rate law is:

- (Δ [R] / Δ time) = k [R]¹

Integration (calcul

on (calculus):
$$\int_0^t \frac{1}{[R]} dR = -k \int_0^t dt$$

MAR

Concentration/Time Relations

Integrating $-(\Delta [R] / \Delta time) = k [R]$ we get:

0

This is the integrated first-order rate law.

MAR

Sucrose decomposes to simpler sugars Rate of disappearance of sucrose = k [sucrose]

k = 0.21 hr-1

Initial [sucrose] =

0.010 M

How long to drop 90% (to 0.0010 M)?

Concentration/Time Relations

Rate of disappear of sucrose = k [sucrose], k = 0.21 hr⁻¹. If initial [sucrose] = 0.010 M, how long to drop 90% or to 0.0010 M?

Use the first order integrated rate law

$$\ln\left(\frac{0.0010 \text{ M}}{0.010 \text{ M}}\right) = -(0.21 \text{ hr}^{-1}) \text{ t}$$

 $\ln (0.10) = -2.30 = -(0.21 \text{ hr}^{-1}) \cdot \text{time}$ time = 11 hours

sig figs and logarithms covered in CH 223

MAR

Using the Integrated Rate Law

The integrated rate law suggests a way to tell if a reaction is first order based on experiment.

 $2 N_2O_5(g) ---> 4 NO_2(g) + O_2(g)$ Rate = k[N₂O₅]

Time (min)	[N ₂ O ₅] (M)	In [N ₂ O ₅]
0	1.00	0
1.0	0.705	-0.35
2.0	0.497	-0.70
5.0	0.173	-1.75

MAR

MAR

Using the Integrated Rate Law

$2 N_2 O_5(g) \longrightarrow 4 NO_2(g) + O_2(g) Rate = k[N_2 O_5]$

Data of conc. vs. time plot do not fit straight line.

Plot of In [N₂O₅] vs. time is a straight line!

MAR

Using the Rate Laws

Characteristic Properties of Reactions of the Type "R \longrightarrow Products"					
Order	Rate Equation	Integrated Rate Equation	Straight-Line Plot	Slope	k Units
0	$-\Delta[\mathbf{R}]/\Delta \mathbf{T} = k[\mathbf{R}]^0$	$[R]_0 - [R]_t = kt$	[R] _t vs. t	-k	mol/L ∙ time
1	$-\Delta[\mathbf{R}]/\Delta \mathbf{T} = k[\mathbf{R}]^1$	$\ln ([R]_t/[R]_0) = -kt$	ln [R] _t vs. t	-k	time ⁻¹
2	$-\Delta[\mathbf{R}]/\Delta \mathbf{T} = k[\mathbf{R}]^2$	$(1/[R]_t) - (1/[R]_0) = kt$	1/[R] _t vs. t	k	L/mol∙time

Also see the "Kinetics Cheat Sheet" Handout

MAR

y = ax + b

rate const conc at = slope time = 0

All 1st order reactions have straight line plot for In [R] vs. time.

(2nd order gives straight line for plot of 1/[R] vs. time; zero order [R] vs. time) - see Handout

Half-Life

Reaction after 4 halflives, or 2616 min. 1/16 of the reactant remains.

MAR

MAR

MAR

MAR

Half-Life

Sugar is fermented in a 1st order process (using an enzyme as a catalyst).

sugar + enzyme --> products Rate of disappear of sugar = k[sugar] k = 3.3 x 10⁻⁴ sec⁻¹

What is the half-life of this reaction?

Half-Life

see <u>Handout</u>

MAR

Half-Life

Rate = k[sugar] and k = 3.3×10^{-4} sec⁻¹. Half-life is 35 min. Start with 10.00 g sugar. How much is left after 2 hr and 20 min? ($t_{1/2}$ = 0.693 / k)

Two Solution pathways - The "CH 104" method:

2 hr and 20 min = 4 half-lives

Half-life	Time Elapsed	Mass Left
1st	35 min	5.00 g
2nd	70	2.50 g
3rd	105	1.25 g
4th	140	0.625 g answer

MAR

MAR

Half-Life

Rate = k[sugar] and k = 3.3×10^{-4} sec⁻¹. Half-life is 35 min. Start with 10.00 g sugar. How much is left after 2 hr and 20 min? ($t_{1/2}$ = 0.693 / k)

Two Solution Pathways - The "CH 222" Method:

Convert 2 hrs 20 min to 8400 seconds In (R / 10.00 g) = - ($3.3 \times 10^{-4} \text{ sec}^{-1}$)(8400 s) In (R / 10.00 g) = - 2.772 Take *antilog*: (R / 10.00 g) = e^{-2.772} = 0.0625 R = 10.00 g * 0.0625 = 0.625 g

CH 222 Method recommended,

MAR

CH 222 Method recommended, not limited to whole number of half-lives, etc. e = "Euler's number" in math = 2.71828...

Half-Life

Half-Life

Start with 1.50 mg of tritium, how much is left after 49.2 years? $t_{1/2} = 12.3$ years In [R] / [R]₀ = -kt [R] = ? [R]₀ = 1.50 mg t = 49.2 yrs Need k, so we calc k from: k = 0.693 / $t_{1/2}$ Obtain k = 0.0564 y⁻¹ Now In [R] / [R]₀ = -kt = - (0.0564 y⁻¹) • (49.2 y) = -2.77 Take antilog: [R] / [R]₀ = e^{-2.77} = 0.0627 0.0627 is the fraction remaining [R]₀ = 1.50 mg, so [R] = 1.50*0.0627 = 0.0941 mg

Half-Life

Half-Life for first order reactions:

$$t_{1/2} = 0.693 / k$$

All biological, radioactive processes first order, most useful

Half-Life for second order reactions:

$$t_{1/2} = 1 / (k[A]_0)$$

Half-Life for zero order reactions: $t_{1/2} = [A]_0 / 2k$

concentration of the reactant

[A]₀ is the initial

Half-Lives of Radioactive Elements

Rate of decay of radioactive is terms of half-life (t _{1/2}).	otopes given in
²³⁸ U> ²³⁴ Th + He	4.5 x 10 ⁹ y
¹⁴ C> ¹⁴ N + beta	5730 y
¹³¹ I> ¹³¹ Xe + beta	8.05 d
Element 106 - seaborgium ²⁶³ Sg> ²⁵⁹ Rf + He	0.8 s
Element 111 - roentgenium ²⁷² Rg> ²⁶⁸ Mt + He	0.0015 s

Half-life also used in medicine; $t_{1/2}$ caffeine = 3.5 hours in the body

MAR

MAR

MECHANISMS A Microscopic View of Reactions

How are reactants converted to products at the molecular level?

We want to connect the RATE LAW to the MECHANISM the experiment to the

theory

MAR

Reaction Coordinate Diagrams

MAR

Reaction Coordinate Diagrams

MAR

Activation Energy

There is a minimum amount of energy required for a reaction: the activation energy, Ea. In general, differences in activation energy are the reason reactions vary from fast to slow.

Temperature and Rate

Generally, as temperature increases, so does the reaction rate.

This is because k is temperature dependent.

Find activation energy through changes in temperature.

Effect of Temperature

Reactions generally occur slower at lower T.

MAR

Iodine clock reaction H₂O₂ + 2 I⁻ + 2 H⁺ --> 2 H₂O + I₂

Collision Theory

To break and make bonds, reactions require (a) activation energy and (b) correct geometry.

 $O_3(g) + NO(g) ---> O_2(g) + NO_2(g)$

0 — 0 0 N = 0

Insufficient activation energy

Collision Theory

To break and make bonds, reactions require (a) activation energy and (b) correct geometry. $O_3(g) + NO(g) ---> O_2(g) + NO_2(g)$ 0 **=** N 0-0 Correct activation energy and geometry

MAR

The Arrhenius Equation Arrhenius equation -Temp (K) $k = Ae^{-E_a/RT}$ Rate constant Svante Arrhenius Activation 8.3145 J/K•mol Frequency factor energy Frequency factor = frequency of collisions with correct geometry. Plot In k vs. 1/T ---> straight line. $\ln k = -(\frac{E_a}{R})(\frac{1}{T}) + \ln A$ straight line. slope = -E_a/R, best way to fi best way to find E_a MAR Always use 8.3145 for "energy" R!

MAR

MAR

Activation Energy and Temperature

Reactions are slower at lower T because a smaller fraction of reactant molecules have enough energy to convert to product molecules.

In general, differences in activation energy cause reactions to vary from fast to slow.

More About the Frequency Factor, A

Frequency Factor often expressed as:

We will be seeing entropy (Δ S) again in CH 223.

REACTION MECHANISMS

- CI

MAR

MOLECULARITY

The molecularity of a process tells how many molecules are involved in the elementary step.

UNIMOLECULAR - only one reactant is involved.

BIMOLECULAR - two different molecules must collide

TERMOLECULAR - three different molecules collide

Elementary Reactions and Their Rate Laws			
Molecularity	Elementary Reaction	Rate Law	
<i>Uni</i> molecular	$A \longrightarrow products$	Rate = $k[A]$	
Bimolecular	$A + A \longrightarrow products$	Rate = $k[A]^2$	
Bimolecular	$A + B \longrightarrow products$	Rate $= k[A][B]$	
Termolecular	$A + A + A \longrightarrow$ products	Rate = $k[A]^3$	
Termolecular	$A + A + B \longrightarrow products$	Rate = $k[A]^2[B]$	
Termolecular	$A + B + C \longrightarrow products$	Rate $= k[A][B][C]$	

MAR

MECHANISMS

Some reactions occur in a single elementary step. Most reactions involve a sequence of elementary steps.

Adding elementary steps gives NET reaction.

MAR

MECHANISMS

Most reactions involve a sequence of elementary steps.

Adding elementary steps gives NET reaction.

 $\mathsf{Bimolecular} \quad \mathsf{NH}_3 * \mathsf{OC1}^- \longrightarrow \mathsf{NH}_2\mathsf{C1} * \mathsf{OH}^-$

Step 2 Bimolecular NH₂Cl + NH₂ → N₂Hs* + Cl⁻ Step 3 Bimolecular $N_2H_5^+ + OH^- \longrightarrow N_2H_4 + H_2O$

н

H-N:

Every elementary step gets a "hump" in the diagram • Overall reaction $2 \text{ NH}_3 + \text{OC1}^- \longrightarrow \text{N}_2\text{H}_4 + \text{H}_2\text{O} + \text{C1}^-$

Reaction Co-ordinate

Mechanisms

In multistep mechanisms, one step will be slower than all others - this is the rate determining step (rds).

Most reactions involve a sequence of elementary steps. Example:

2 I + HOOH + 2 H + ---> I₂ + 2 H₂O Rate = k $[I^{-}]$ $[H_2O_2]$

Note that the rate law comes from experiment. Also note that order of reactants in rate law not necessarily the same as stoichiometric coefficients!

MAR

MECHANISMS

2 I [.] +	ноон	+ 2	H+	>	I_2	+	2 H₂O
	Rat	e = k	[ŀ]	[HO	он]	

A scientist proposes the following mechanism for this reaction:

Step 1 - slow	HOOH + I> HOI + OH
Step 2 - fast	HOI + I ⁻ > I_2 + OH ⁻
Step 3 - fast	2 OH ⁻ + 2 H ⁺ > 2 H ₂ O

Note that H⁺ not involved in slow step, so [H⁺] is not in the rate law (a zero order reactant.)

Bimolecular slow step reflected in the rate law; this is a legitimate mechanism.

MAR

2 I' + HOOH + 2 H' ---> I₂ + 2 H₂O Rate = k [I-] [HOOH] Step 1 - slow HOOH + I --> HOI + OH Step 2 - fast HOI + I --> I₂ + OH Step 3 - fast 2 OH + 2 H+ --> 2 H₂O

Step 1 is bimolecular and involves I- and HOOH. Therefore, this predicts the rate law should be Rate α [I·] [HOOH] - as observed!!

The species HOI and OH- are reaction

intermediates; critical for providing evidence for or against a proposed mechanism. See: Reaction Mechanisms Guide

MAR

Mechanisms - Uses Mechanisms help predict the products of a reaction Very useful in organic chemistry: the S_N1 and S_N2 mechanisms

MAR

CATALYSIS

Catalysts speed up reactions by altering the mechanism to lower the activation energy barrier.

MAR

Page III-12-11 / Chapter Twelve Lecture Notes

MAR

MAR

SPENT/20 MINUTESTRYING TO UNDERSTAND A KINETICS PROBLEM

HOURS

MAR

End of Chapter 12 FORGOT TO CHANGE MINUTES TO

See[.]

- Chapter Twelve Study Guide
- <u>Chapter Twelve Concept Guide</u>
- · Important Equations (following
- this slide) End of Chapter Problems
- (following this slide)

MAR

End of Chapter Problems: Test Yourself

- The reaction between ozone and nitrogen dioxide at 231 K is first order in both NO₂ and O₃: 2 NO₂(g) + O₃(g) → N₂O₅(s) + O₂(g) Write the rate equation for the reaction. If the concentration of NO₂ is tripled, what is the change in the reaction rate?
 After 2.57 h at 27 °C, a first order sucrose concentration decreased from 0.0146 M to 0.0132 M. Find the rate constant, k.
- 3.
- 0.0146 M to 0.0132 M. Find the rate constant, K. The compound Xe(CF₃) decomposes in a first-order reaction to elemental Xe with a half-life of 30. min. If you place 7.50 mg of Xe(CF₃)₂ in a flask, how long must you wait until only 0.25 mg of Xe(CF₃)₂ remains? Gaseous NO₂ decomposes at 573 K: 2 NO₂(g) \rightarrow 2 NO(g) + O₂(g) The concentration of NO₂ was measured as a function of time. A graph of 1/ 4.
- $[NO_2]$ versus time gives a straight line with a slope of 1.1 L/mol.s. What is the rate law for this reaction? What is the rate constant k?
- the rate raw not this reaction? What is the rate constant K? S What is the rate law for the following *elementary* reaction: NO(g) + NO₃(g) → 2 NO₂(g) 6. For a reaction, In k versus 1/T(K) is plotted, and the linear regression line is: y = -6373.3x + 18.19, r = -0.997 What is the activation energy for this reaction?

Important Equations, Constants, and Handouts from this Chapter:

The Rate Law: $Rate = k[A]^p[B]^m[C]^n \dots$ m, n, p = 0, 1 or 2 only (in our classes)

Order Integrated Rate Law;

$$ln \frac{[R]}{R} = -kt$$

1st (

$$\begin{bmatrix} R_0 \end{bmatrix} \\ t_{\frac{1}{2}} = \frac{0.693}{k}$$

The Arrhenius Equation:

$$ln(k) = -\left(\frac{E_a}{R}\right)\left(\frac{1}{T}\right) + ln(A)$$

• R = 8.3145 J/mol·K

- "Kinetics Cheat Sheet"
- handout
- "Reactions Mechanisms" handout

Kinetics: rate, rate law, orders of reaction, the rate constant (k), 1st vs. 2nd. vs. zero order, half life, mechanism, elementary reaction, bimolecular (and uniand ter-molecular), Arrhenius equation, activation energy, frequency factor, mechanism, intermediate, catalyst, rds (rate determining step)

End of Chapter Problems: Answers

- Rate = k[NO2][O3]; tripling NO triples the rate. 0.0392 h⁻¹
- 2. 3.
- 150 min Rate = $k[NO_2]^2$, k = 1.1 L/mol·s Rate = $k[NO][NO_3]$
- 4. 5.
- 6. 53.0 kJ/mol