Chemical Kinetics: The Rates of Chemical Reactions
 Chapter 12

Chemistry 222
Professor Michael Russell

An automotive catalytic muffler.

Last update:
4/29/24
Last update.
4/29/24

Chemical Kinetics

We can use thermodynamics to tell if a reaction is product or reactant favored.
But this gives us no info on HOW FAST reaction goes from reactants to products.
KINETICS - the study of REACTION RATES and their relation to the way the reaction proceeds, i.e., its MECHANISM.

Reaction Rates

Reaction rate is the change in concentration of a reactant or product with time
Reactants disappear with time (hence, negative sign), and products appear with time (hence, positive sign)
$E x:$ for $\mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{4 (g)}} \rightarrow \mathbf{2} \mathbf{N O}_{\mathbf{2 (g)}}$

$$
\text { rate }=-\frac{\Delta\left[\mathbf{N}_{2} \mathrm{O}_{4}\right]}{\Delta t}=+\frac{1}{2} \frac{\Delta\left[\mathrm{NO}_{2}\right]}{\Delta t}
$$

Shroud of Turin

Shroud of Jesus?!?
Fake or Real?
Explored with Kinetics

Reaction Rates

Reaction rate is the change in concentration of a reactant or product with time
Ex: for $\mathbf{A} \rightarrow \mathbf{B}$

MAR

Reaction Rates

$$
E x: \mathbf{N}_{\mathbf{2 (g)}}+\mathbf{O}_{\mathbf{2 (g)}} \rightarrow \mathbf{2} \mathbf{N O}_{(\mathrm{g})}
$$

Rate of N_{2} consumption $=-\frac{\Delta\left[\mathrm{N}_{2}\right]}{\Delta t}=-\frac{\left[\mathrm{N}_{2}\right]_{\text {final }}-\left[\mathrm{N}_{2}\right]_{\text {initial }}}{t_{\text {final }}-t_{\text {initial }}}$
Rate of O_{2} consumption $=-\frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta t}=-\frac{\left[\mathrm{O}_{2}\right]_{\text {final }}-\left[\mathrm{O}_{2}\right]_{\text {initial }}}{t_{\text {final }}-t_{\text {initial }}}$
Reaction Rate $=-\frac{\Delta\left[\mathrm{N}_{2}\right]}{\Delta t}=-\frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta t}=\frac{1}{2} \frac{\Delta[\mathrm{NO}]}{\Delta t}$

Determining a Reaction Rate

Factors Affecting Rates

Concentration
Greater concentration of
reactants means more
collisions and faster
rates
Temperature
Higher temperatures
means particles collide
with greater kinetic
energy, increasing the
rates

Surface Area
Increased surface area means
greater chances for collisions and faster rates

Catalysts
Catalysts speed up reactions
without being used up. They lower the activation energy and increase the rates
Blue dye is oxidized with bleach.
Its concentration decreases with time.
The rate - the change in dye conc with time can be determined from a plot of [Dye] vs. time
Surface Area
Increased surface area means
greater chances for
collisions and faster rates
Catalysts
Catalysts speed up reactions
without being used up.
They lower the activation
energy and increase the
rates

Factors Affecting Rates

Surface area of reactants

Lycopodium powder is a yellow-tan dust-like powder

Average, Instantaneous, Reaction Rates

We will use "average rate" in CH 222

Factors Affecting Rates

Factors Affecting Rates

Catalysts: catalyzed decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$ with MnO_{2}

Factors Affecting Rates

Temperature

Concentrations and Rates

Take reaction where Cl in cisplatin $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ is replaced by $\mathrm{H}_{2} \mathrm{O}$

Rate of change of conc of Pt compd
$=\frac{\text { Am't of cisplatin reacting }(\mathrm{mol} / \mathrm{L})}{\text { elapsed time }(\mathrm{t})}$

Rate of change of conc of Pt compd
$=\frac{\text { Am't of cisplatin reacting }(\mathrm{mol} / \mathrm{L})}{\text { elapsed time }(\mathrm{t})}$
Rate of reaction is proportional to $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
We express this as a RATE LAW
Rate of reaction $=k\left[\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
where $\mathrm{k}=$ rate constant
k is independent of conc. but increases with T

Concentrations and Rates

To postulate a reaction mechanism, we study its

reaction rate and

 concentration dependence

Concentrations and Rates

Rate of change of conc of Pt compd
$=\frac{\text { Am't of cisplatin reacting }(\mathrm{mol} / \mathrm{L})}{\text { elapsed time }(\mathrm{t})}$

50
a Concentrations, Rates, and Rate Laws

In general, for
$a A+b B \quad-->x X$ with a catalyst C
Rate $=k[A]^{m}[B]^{n}[C]^{p}$
The exponents m, n, and p

- are the reaction order
- can be 0 , 1, or 2 (in $\mathrm{CH} 222-\mathrm{CH} 223$!)
- must be determined by experiment!
- overall order = m + $\mathbf{n}+\mathbf{p}$

Ros on Interpreting Rate Laws

Example: Rate $=k[A] m$

If $m=1, r x n$. is 1 st order in A
Rate $=k[A]^{1}$
If [A] doubles, then rate goes up by factor of ?
If $\mathbf{m}=\mathbf{2}, \mathbf{r x n}$. is $\mathbf{2 n d}$ order in \mathbf{A}.
Rate $=k[A]^{2}$
Doubling [A] increases rate by ?
If $\mathbf{m}=0$, $r \times n$. is zero order.
Rate $=k[A]^{0}$
If $[A]$ doubles, rate ?

	Deriving Rate Laws	
Expt.	$\left[\mathrm{CH}_{3} \mathrm{CHO}\right](\mathrm{mol} / \mathrm{L})$	Rate of $\mathrm{CH}_{3} \mathrm{CHO}(\mathrm{mol} / \mathrm{L} \cdot \mathrm{sec})$
1	0.10	0.020
2	0.20	0.081
3	0.30	0.182
4	0.40	0.318

Let's find the order (x) with respect to $\mathrm{CH}_{3} \mathrm{CHO}$ Use two trials where [$\mathrm{CH}_{3} \mathrm{CHO}$] changes - any change in rate is caused by $\mathrm{CH}_{3} \mathrm{CHO}$
Apply the rate law to these two trials: $\begin{aligned} & \frac{\text { Rate } 2}{\text { Rate } 1}=\frac{0.081}{0.020}=\frac{\mathrm{k}(0.20)^{x}}{\mathrm{k}(0.10)^{x}} \\ & 4.1=2.0 \times\end{aligned}$ $2=x$

Could also:
$\left\{\begin{array}{l}\text { Could also: } 2.1=\log 2.0^{\mathrm{x}}=\mathrm{x} \log 2.0 \\ \mathrm{log}=(\log 41)(\log 2.0) \\ x=2\end{array}\right.$ $\left\{\begin{array}{l}\log 4.1=\log 2.0 x=x \\ x=(\log 4.1)(\log 2.0) \\ x=2\end{array}\right.$
o the order of reaction for $\mathrm{CH}_{3} \mathrm{CHO}$ is " 2 ". We say the
reaction is second order with respect to $\mathrm{CH}_{3} \mathbf{C H O}$

500

Concentration/Time Relations

Chemists need to know what the concentration of reactant is as function of time.
Most reactions are first order (radioactive, biological, etc.)

Let's consider FIRST ORDER REACTIONS

For 1st order reactions (1), the rate law is:

- $(\Delta[R] / \Delta$ time $)=k[R]^{1}$

Integration (calculus): $\quad \int_{0}^{t} \frac{1}{[R]} d R=-k \int_{0}^{t} d t$

Fion or Concentration/Time Relations

Integrating $-(\Delta[\mathrm{R}] / \Delta$ time $)=\mathrm{k}[\mathrm{R}]$ we get:

$[\mathrm{R}]_{\mathrm{t}} /[\mathrm{R}]_{0}=$ fraction remaining after time t has elapsed.
This is the integrated first-order rate law.

Sucrose decomposes to simpler sugars
Rate of disappearance of sucrose = k [sucrose] $\mathrm{k}=0.21 \mathrm{hr}^{-1}$ Initial [sucrose] = 0.010 M

How long to drop 90% (to 0.0010 M)?

Using the Integrated Rate Law
The integrated rate law suggests a way to tell if a reaction is first order based on experiment.
$2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g})--->4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
Rate $=k\left[N_{2} \mathrm{O}_{5}\right]$

Time (min)	$\left[\mathrm{N}_{2} \mathrm{O}_{5}\right](\mathrm{M})$	$\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$
0	1.00	0
1.0	0.705	-0.35
2.0	0.497	-0.70
5.0	0.173	-1.75

Using the Integrated Rate Law

Plot of $\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$ vs. time is a straight line! Eqn. for straight line:
$y=a x+b$
$\begin{array}{lll}\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right] & =-\mathrm{kt} \\ \Uparrow & \| & \ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{0} \\ \begin{array}{ll}\text { conc at } & \text { rate const } \\ \text { conc at }\end{array} \\ \text { time t } & =\text { slope } & \text { time }=0\end{array}$
All 1st order reactions have straight line plot for In [R] vs. time.
(2nd order gives straight line for plot of $1 /[R]$ vs. time; zero order [R] vs. time) - see Handout

$\ln (0.10)=-2.30=-\left(0.21 \mathrm{hr}^{-1}\right) \cdot$ time
sig figs and logarithms sig figs and logarith
covered in CH 223
time $=11$ hours

MAR

Using the Integrated Rate Law
$2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g})-->4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ Rate $=\mathrm{k}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$

Data of conc. vs. time plot do not fit straight line.

Plot of $\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$ vs. time is a straight line!

MAR

Using the Rate Laws

Characteristic Properties of Reactions of the Type "R \longrightarrow Products"					
Order	Rate Equation	Integrated Rate Equation	Straight-Line Plot	Slope	k Units
0	$-\Delta[R] / \Delta T=k[R]^{0}$	$[\mathrm{R}]_{0}-[\mathrm{R}]_{\mathrm{t}}=k t$	$[\mathrm{R}]_{t}$ vs. t	-k	mol/L - time
1	$-\Delta[R] / \Delta T=k[R]^{1}$	$\ln \left([R]_{t} /[R]_{0}\right)=-k t$	$\ln [\mathrm{R}]_{t}$ v. t	-k	time ${ }^{-1}$
2	$-\Delta[R] / \Delta T=k[R]^{2}$	$\left(1 /[R]_{t}\right)-\left(1 /[R]_{0}\right)=k t$	$1 /[\mathrm{R}]_{t}$ vs. t	k	L/mol - time

Also see the "Kinetics Cheat Sheet" Handout

Half-Life

Reaction after 4 halflives, or 2616 min. 1/16 of the reactant remains.

Half-Life

Half-Life

Rate $=\mathbf{k}[$ sugar $]$ and $\mathbf{k}=3.3 \times 10^{-4}$ sec $^{-1}$. Half-life is 35 min . Start with 10.00 g sugar. How much is left after 2 hr and 20 min ? ($\mathrm{t}_{1 / 2}=0.693 / \mathrm{k}$)		
Two Solution pathways - The "CH 104" method:		
$\mathbf{2 ~ h r ~ a n d ~} \mathbf{2 0 ~ m i n ~}=\mathbf{4}$ half-lives		
Half-life	Time Elapsed	Mass Left
1st	35 min	5.00 g
2nd	70	2.50 g
3rd	105	1.25 g
4th	140	0.625 g answer

Half-Life

Radioactive decay is a first order process.

$$
\begin{array}{lc}
\text { Tritium }--> & \text { electron } \\
{ }_{3} \mathrm{H} & { }_{-1} \mathrm{e}
\end{array} \underset{{ }_{2}{ }_{2} \mathrm{He}}{\text { helium }}
$$

If you have 1.50 mg of tritium, how much is left after 49.2 years? $\mathrm{t}_{1 / 2}=12.3$ years

Half-Life

Rate $=\mathrm{k}[\mathrm{sugar}]$ and $\mathrm{k}=3.3 \times 10^{-4} \mathbf{~ s e c}^{-1}$. What is the half-life of this reaction?
Solution
$[R] /[R]_{0}=1 / 2$ when $t=t_{1 / 2}$
Therefore, $\ln (1 / 2)=-k \cdot \mathbf{t}_{1 / 2}$

$$
\begin{aligned}
& -0.693=-k \cdot t_{1 / 2} \\
& \mathbf{t}_{1 / 2}=0.693 / k
\end{aligned}
$$

So, for sugar,
$\mathrm{t}_{1 / 2}=0.693 / \mathrm{k}=2100 \mathrm{sec}=35 \mathrm{~min}$ see Handout

Half-Life

Rate $=\mathbf{k}$ [sugar] and $\mathbf{k}=3.3 \times 10^{-4} \mathbf{s e c}^{-1}$. Half-life is 35 min . Start with 10.00 g sugar. How much is left after 2 hr and 20 min ? ($\mathrm{t}_{1 / 2}=0.693 / \mathrm{k}$)
Two Solution Pathways - The "CH 222" Method:
Convert 2 hrs 20 min to 8400 seconds
$\ln (R / 10.00 \mathrm{~g})=-\left(3.3 \times 10^{-4} \mathrm{sec}^{-1}\right)(8400 \mathrm{~s})$
$\ln (R / 10.00 \mathrm{~g})=\mathbf{- 2 . 7 7 2}$
Take antilog: $(\mathrm{R} / \mathbf{1 0 . 0 0} \mathrm{g})=\mathrm{e}^{-2.772}=0.0625$
$\mathrm{R}=10.00 \mathrm{~g}$ * $0.0625=0.625 \mathrm{~g}$
CH 222 Method recommended, not limited to whole number of half-lives, etc. $\mathrm{e}=$ "Euler's number" in math $=2.71828 . .$.

Half-Life

Start with $\mathbf{1 . 5 0} \mathbf{~ m g}$ of tritium, how much is left after $\mathbf{4 9 . 2}$ years? $\mathrm{t}_{1 / 2}=12.3$ years
$\ln [R] /[R]_{0}=-k t$
$[R]=? \quad[R]_{0}=1.50 \mathrm{mg} \quad \mathrm{t}=49.2 \mathrm{yrs}$
Need k, so we calc k from: $\quad k=0.693 / t_{1 / 2}$
Obtain k $=0.0564 \mathrm{y}^{-1}$
Now $\ln [R] /[R]_{0}=-k t=-\left(0.0564 y^{-1}\right) \cdot(49.2 y)$

$$
=-2.77
$$

Take antilog: $[R] /[R]_{0}=e^{-2.77}=0.0627$
0.0627 is the fraction remaining
$[R]_{0}=1.50 \mathrm{mg}$, so $[R]=1.50 * 0.0627=0.0941 \mathrm{mg}$

Half-Life

$$
\begin{aligned}
& \text { Half-Life for first order reactions: } \\
& \mathrm{t}_{1 / 2}=0.693 / k
\end{aligned}
$$

All biological, radioactive processes first order, most useful

Half-Life for second order reactions:

$$
t_{1 / 2}=1 /\left(k[A]_{0}\right)
$$

Half-Life for zero order reactions: $t_{1 / 2}=[A]_{0} / 2 k$
[A]o is the initial concentration of the reactant

Half-Lives of Radioactive Elements

Rate of decay of radioactive isotopes given in terms of half-life ($\mathrm{t}_{1 / 2}$).

${ }^{238} \mathrm{U}-$--> $234 \mathrm{Th}+\mathrm{He}$	$4.5 \times 10^{9} \mathrm{y}$
${ }^{14} \mathrm{C}$--> ${ }^{14} \mathrm{~N}+$ beta	5730 y
131] --> 131 Xe + beta	8.05 d
Element $106-$ seaborgium ${ }^{263} \mathrm{Sg}$--> ${ }^{259 \mathrm{Rf}}+\mathrm{He}$	0.8 s
Element 111 - roentgenium ${ }^{272} \mathrm{Rg}$--> ${ }^{\mathbf{2 6 8}} \mathrm{Mt}+\mathrm{He}$	0.0015 s

Half-life also used in medicine; $t_{1 / 2}$ caffeine $=3.5$ hours in the body

MECHANISMS

A Microscopic View of Reactions
How are reactants converted to products at the molecular level?

We want to connect the RATE LAW to the MECHANISM the experiment to the theory

MAR

Reaction Coordinate Diagrams

It is helpful to visualize energy changes throughout a process on a reaction coordinate diagram.
This diagrams shows the rearrangement of methyl isocyanide to methyl cyanide (acetonitrile).

MAR

Reaction Coordinate Diagrams

The species present at the transition state is called the activated complex.
The energy gap, E_{a} between the reactants and the activated complex is the activation energy barrier.

Activation Energy
There is a minimum amount of energy required for a reaction: the activation energy, E_{a}.
In general, differences in activation energy are the reason reactions vary from fast to slow.

Temperature and Rate

Generally, as temperature increases, so does the reaction rate.

This is because k is temperature dependent.

Find activation energy through changes in temperature.

Collision Theory

To break and make bonds, reactions require
(a) activation energy and
(b) correct geometry.
$\mathrm{O}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})-->\mathrm{O}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g})$

Reactions are slower at lower T because a smaller fraction of reactant molecules have enough energy to convert to product molecules.

In general, differences in activation energy cause reactions to vary from fast to slow.

Effect of Temperature

Iodine clock reaction $\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{I}^{-}+2 \mathrm{H}^{+}-$$2 \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2}$

MAR

Collision Theory

To break and make bonds, reactions require
(a) activation energy and
(b) correct geometry.

$$
\mathrm{O}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g})-\ldots \mathrm{O}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g})
$$

$$
\begin{array}{ll}
0-0 & 0=\mathrm{N} \\
\text { II } \\
0
\end{array}
$$

Correct activation energy and geometry

Arrhenius equation -

Frequency factor $=$ frequency of collisions with correct geometry.
$\ln \mathrm{k}=-\left(\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\right)\left(\frac{1}{\mathrm{~T}}\right)+\ln \mathrm{A}$
Plot In k vs. 1/T ---> straight line. slope $=-E_{a} / R$, best way to find E_{a}

Always use 8.3145 for "energy" R!

More About the Frequency Factor, A
Frequency Factor often expressed as:

We will be seeing entropy (Δ S) again in CH 223.

MOLECULARITY

The molecularity of a process tells how many molecules are involved in the elementary step.
UNIMOLECULAR - only one reactant is involved.
BIMOLECULAR - two different molecules must collide
TERMOLECULAR - three different molecules collide

Elementary Reactions and Their Rate Laws		
Molecularity	Elementary Reaction	Rate Law
Unimolecular	$\mathrm{A} \longrightarrow$ products	Rate $=k[$ A $]$
Bimolecular	$\mathrm{A}+\mathrm{A} \longrightarrow$ products	Rate $=k[A]]^{2}$
Bimolecular	$A+B \longrightarrow$ products	Rate $=k[A][B]$
Termolecular	$\mathrm{A}+\mathrm{A}+\mathrm{A} \longrightarrow$ products	Rate $=k[A]]^{3}$
Termolecular	$\mathrm{A}+\mathrm{A}+\mathrm{B} \longrightarrow$ products	Rate $=k[A]^{2}[B]$
Termolecular	$\mathrm{A}+\mathrm{B}+\mathrm{C} \longrightarrow$ products	Rate $=k[A][B][C]$

MECHANISMS

Most reactions involve a sequence of elementary steps.
Adding elementary steps gives NET reaction.
Every elementary step gets a
"hump" in the diagram

REACTION MECHANISMS
A reaction mechanism is
the sequence of events
that describes the actual
process by which
reactants become
products.
Reactions may occur all at

once ("single step") or
through several discrete
steps.

Each of these steps known
as an elementary step

A bimolecular reaction

MECHANISMS

Some reactions occur in a single elementary step. Most reactions involve a sequence of elementary steps.
Adding elementary steps gives NET reaction.

Overall reaction $\quad 2 \mathrm{O}_{3}(\mathrm{~g}) \rightarrow 3 \mathrm{O}_{2}(\mathrm{~g})$

Every elementary step gets a
"hump" in the diagram

Mechanisms
In multistep mechanisms, one step will be slower than all others - this is the rate determining step (rds).
Most reactions involve a sequence of elementary steps. Example:

$$
2 \mathrm{I}^{-}+\mathrm{HOOH}+2 \mathrm{H}^{+}-->\mathrm{I}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

$$
\text { Rate }=k\left[I-1\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\right.
$$

Note that the rate law comes from experiment.
Also note that order of reactants in rate law not necessarily the same as stoichiometric coefficients!

MECHANISMS

$2 \mathrm{I}^{-}+\mathrm{HOOH}+2 \mathrm{H}^{+}-->\mathrm{I}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Rate $=\mathbf{k}[\mathrm{l}-\mathrm{l}$ [HOOH$]$
A scientist proposes the following mechanism for this reaction:
Step 1 - slow $\mathrm{HOOH}+\mathrm{I}^{-}$--> $\mathrm{HOI}+\mathrm{OH}^{-}$
Step 2 - fast $\mathrm{HOI}+\mathrm{I}^{-}-->\mathrm{I}_{2}+\mathrm{OH}^{-}$
Step 3 - fast $2 \mathrm{OH}^{-}+2 \mathrm{H}^{+}$--> $2 \mathrm{H}_{2} \mathrm{O}$
Note that H^{+}not involved in slow step, so $\left[\mathrm{H}^{+}\right]$is not in the rate law (a zero order reactant.)
Bimolecular slow step reflected in the rate law; this is a legitimate mechanism.

Mechanisms - Uses

Mechanisms help predict the products of a reaction
Very useful in organic chemistry: the $\mathrm{S}_{\mathrm{N}} 1$ and $\mathrm{S}_{\mathrm{N}} 2$ mechanisms
$S_{N}=$ substitution nucleophilic

$S_{N} 1$

$S_{N} 2$

MECHANISMS

$$
\begin{aligned}
& 2 \mathrm{I}+\mathrm{HOOH}+2 \mathrm{H}^{+}-->\mathrm{I}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
& \text { Rate }=\mathrm{k}[\mathrm{ll}][\mathrm{HOOH}] \\
& \text { Step } 1 \text { - slow } \mathrm{HOOH}+\mathrm{I}]-\mathrm{HOI}+\mathrm{OH}- \\
& \text { Step } 2 \text { - fast } \mathrm{HOI}+\mathrm{I}^{-}-\mathrm{H}^{->} \mathrm{I}_{2}+\mathrm{OH}^{-} \\
& \text {Step } 3 \text { - fast } 2 \mathrm{OH}^{-}+2 \mathrm{H}^{+}-->2 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Step 1 is bimolecular and involves I - and HOOH .
Therefore, this predicts the rate law should be
Rate $\alpha[\mathrm{I}-\mathrm{H}[\mathrm{HOOH}]$ - as observed!!
The species HOI and OH - are reaction intermediates; critical for providing evidence for or against a proposed mechanism.
See: Reaction Mechanisms Guide

$$
M A R
$$

CATALYSIS

Catalysts speed up reactions by altering the mechanism to lower the activation energy barrier.

CATALYSIS - Uses

1. In auto exhaust systems - Pt , NiO , PtO $2 \mathrm{CO}+\mathrm{O}_{2}-\mathrm{-} \mathrm{CO}_{2}$ $2 \mathrm{NO}--->\mathrm{N}_{2}+\mathrm{O}_{2}$

CATALYSIS - Uses

CATALYSIS
Catalysis and activation energy

U Uncatalyzed reaction
——Catalyzed reaction

lodine-Catalyzed Isomerization of cis-2-Butene

Important Equations, Constants, and Handouts from this Chapter:

The Rate Law:
Rate $=k[A]^{p}[B]^{m}[C]^{n} \ldots$
$m, n, p=0,1$ or 2 only (in our classes)
1st Order Integrated Rate Law;

$$
\ln \frac{[R]}{\left[R_{0}\right]}=-k t
$$

$$
t_{\frac{1}{2}}=\frac{0.693}{k}
$$

The Arrhenius Equation:
$\ln (k)=-\left(\frac{E_{a}}{R}\right)\left(\frac{1}{T}\right)+\ln (A)$

- $\mathrm{R}=8.3145 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
- "Kinetics Cheat Sheet" handout
- "Reactions Mechanisms" handout

Kinetics: rate, rate law, orders of reaction, the rate constant (k), 1st vs. 2nd. vs. zero order, half life, mechanism, elementary reaction, bimolecular (and uniand ter-molecular), Arrhenius equation, activation energy, frequency factor, mechanism, intermediate, catalyst, rds (rate determining step)

1. The reaction between ozone and nitrogen dioxide at 231 K is first order in both NO_{2} and $\mathrm{O}_{3}: 2 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})$ Write the rate equation for the reaction. If the concentration of NO_{2} is tripled, what is the change in the reaction rate?
2. After 2.57 h at $27^{\circ} \mathrm{C}$, a first order sucrose concentration decreased from 0.0146 M to 0.0132 M . Find the rate constant, k
3. The compound $\mathrm{Xe}\left(\mathrm{CF}_{3}\right)_{2}$ decomposes in a first-order reaction to elemental Xe with a half-life of 30 min . If you place 7.50 mg of $\mathrm{Xe}\left(\mathrm{CF}_{3}\right)_{2}$ in a flask, how long must you wait until only 0.25 mg of $\mathrm{Xe}\left(\mathrm{CF}_{3}\right)_{2}$ remains?
4. Gaseous NO_{2} decomposes at $573 \mathrm{~K}: 2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$ The concentration of NO_{2} was measured as a function of time. A graph of $1 /$ $\left[\mathrm{NO}_{2}\right]$ versus time gives a straight line with a slope of $1 . \mathrm{L} / \mathrm{mol} . \mathrm{s}$. What is What is the rate law for the following elementary reaction:
5. What is the rate law for the following elementary reaction: $\quad \mathrm{NO}(\mathrm{g})$ $+{ }_{+}^{+\mathrm{NO}_{3}(\mathrm{~g}) \rightarrow 2} \rightarrow \mathrm{NO}_{2}(\mathrm{~g})$
6. For a reaction, In k versus $1 / T(K)$ is plotted, and the linear regression line is: $y=-6373.3 x+18.19, r=-0.997$ What is the activation energy for this reaction?
[^0]
[^0]: 1. Rate $=k[\mathrm{NO} 2][\mathrm{O} 3]$; tripling NO triples the rate 2. $0.0392 \mathrm{~h}^{-1}$
 2. 150 min
 3. Rate $=\mathrm{k}\left[\mathrm{NO}_{2}\right]^{2}, \mathrm{k}=1.1 \mathrm{~L} / \mathrm{mol} \cdot \mathrm{s}$
 4. Rate $=k[\mathrm{NO}]\left[\mathrm{NO}_{3}\right]$
 5. $53.0 \mathrm{~kJ} / \mathrm{mol}$
