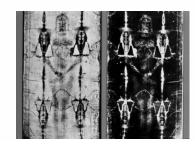
Chemical Kinetics: The Rates of Chemical Reactions Chapter 12



An automotive catalytic muffler.

Last update: 4/29/24 MAR

Shroud of Turin

Shroud of Jesus?!? Fake or Real? Explored with Kinetics

Chemical Kinetics

- We can use thermodynamics to tell if a reaction is product or reactant favored.
- But this gives us no info on HOW FAST reaction goes from reactants to products.
- KINETICS the study of REACTION RATES and their relation to the way the reaction proceeds, i.e., its MECHANISM.

MAR

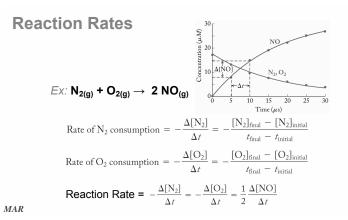
MAR

Reaction Rates

Reaction rate is the change in concentration of a reactant or product with time *Ex:* for $\mathbf{A} \rightarrow \mathbf{B}$

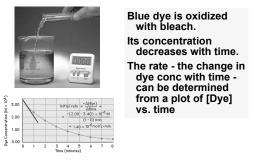
MAR

Reaction Rates

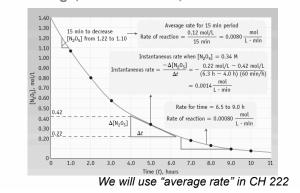

Reaction rate is the change in concentration of a reactant or product with time

Reactants *disappear* with time (hence, negative sign), and products *appear* with time (hence, positive sign)

$$= x. \text{ IOI } \mathbf{N}_2 \mathbf{O}_{4(g)} \rightarrow \mathbf{Z} \mathbf{N} \mathbf{O}_{2(g)}$$


$$rate = -\frac{\Delta[N_2O_4]}{\Delta t} = +\frac{1}{2}\frac{\Delta[NO_2]}{\Delta t}$$

Rates in chemistry are usually "amount per unit time", i.e. M/s, etc.


MAR

Determining a Reaction Rate

MAR

Average, Instantaneous, Reaction Rates

Factors Affecting Rates

Concentration

Greater concentration of reactants means more collisions and faster rates

Temperature

Higher temperatures means particles collide with greater kinetic energy, increasing the rates

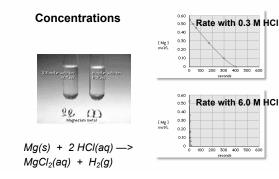
Surface Area

Increased surface area means greater chances for collisions and faster rates

Catalysts

Catalysts speed up reactions without being used up. They lower the activation energy and increase the rates

MAR


Factors Affecting Rates

Surface area of reactants

Lycopodium powder is a yellow-tan dust-like powder consisting of the dry spores of clubmoss plants or ferns MAR

Factors Affecting Rates

Factors Affecting Rates

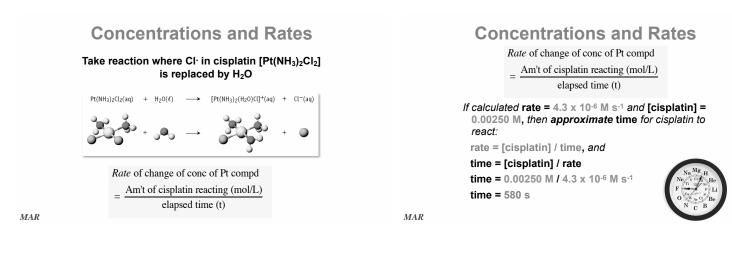
Catalysts: catalyzed decomposition of H_2O_2 with MnO_2

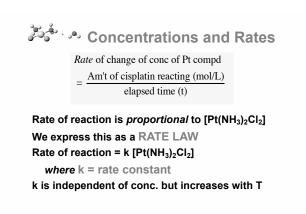
 $2 H_2O_2(l) \longrightarrow 2 H_2O(l) + O_2(g)$

Factors Affecting Rates

Temperature

MAR


Concentrations and Rates


To postulate a reaction mechanism, we study its

reaction rate and concentration dependence

MAR

Concentrations, Rates, and Rate Laws
In general, for

a A + b B ---> x X with a catalyst C

Rate = k [A]^m[B]ⁿ[C]^p
The exponents m, n, and p
are the reaction order
can be 0, 1, or 2 (in CH 222 - CH 223!)
must be determined by experiment!
overall order = m + n + p



Example: Rate = k [A]^m

If m = 1, rxn. is 1st order in A
Rate = k [A] ¹
If [A] doubles, then rate goes up by factor of ?
If m = 2, rxn. is 2nd order in A.
Rate = $k [A]^2$
Doubling [A] increases rate by ?
lf m = 0, rxn. is zero order.
Rate = k [A] ⁰
If [A] doubles, rate ?

🔊 📥 Deriving Rate Laws

Example: Derive rate law and k for $CH_3CHO(g) \longrightarrow CH_4(g) + CO(g)$ from experimental data for rate of disappearance of CH₃CHO Expt. [CH₃CHO] Disappear of CH₃CHO (mol/L) (mol/L•sec) 1 0.10 0.020 2 0.20 0.081 3 0.30 0.182 4 0.40 0.318 The rate law: rate = k[CH₃CHO]×

So the order of reaction for CH₃CHO is "2". We say the reaction is second order with respect to CH₃CHO

MAR

MAR

MAR

کی در Concentration/Time Relations

Chemists need to know what the concentration of reactant is as function of time. *Most* reactions are first order (radioactive,

biological, etc.) Let's consider FIRST ORDER REACTIONS

For 1st order reactions (1), the rate law is:

- (\triangle [R] / \triangle time) = k [R]¹

Integration (calcul

on (calculus):
$$\int_0^t \frac{1}{[R]} dR = -k \int_0^t dt$$

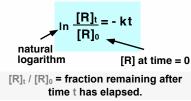
MAR

😹 🖦 Deriving Rate Laws

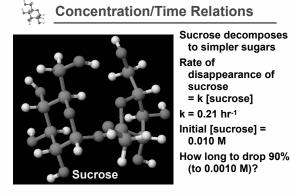
Rate of rxn = k [CH₃CHO]²

- Here the rate goes up by _____ when initial conc. doubles. Therefore, we say this reaction is order.
- Now determine the value of k. Use expt. #3 data on earlier slide,

0.182 mol/L•s = k (0.30 mol/L)²


 $k = 2.0 (L / mol \cdot s)$

Using k you can calc. rate at other values of [CH₃CHO] at same T.


MAR

Concentration/Time Relations

Integrating $-(\Delta [R] / \Delta time) = k [R]$ we get:

This is the integrated first-order rate law.

Concentration/Time Relations

Rate of disappear of sucrose = k [sucrose], k = 0.21 hr⁻¹. If initial [sucrose] = 0.010 M, how long to drop 90% or to 0.0010 M?

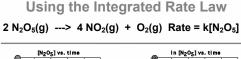
Use the first order integrated rate law

$$\ln\left(\frac{0.0010 \text{ M}}{0.010 \text{ M}}\right) = - (0.21 \text{ hr}^{-1}) \text{ t}$$

 $\ln (0.10) = -2.30 = -(0.21 \text{ hr}^{-1}) \cdot \text{time}$ time = 11 hours sig figs and logarithms covered in CH 223

MAR

MAR

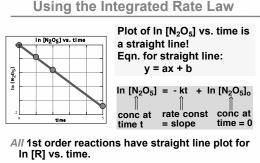

	-	
lleina the	Integrated	Rato Law
	IIICulateu	

The integrated rate law suggests a way to tell if a reaction is first order based on experiment.

 $2 N_2O_5(g) ---> 4 NO_2(g) + O_2(g)$ Rate = k[N_2O_5]

Time (min)	[N ₂ O ₅] (M)	In [N ₂ O ₅]
0	1.00	0
1.0	0.705	-0.35
2.0	0.497	-0.70
5.0	0.173	-1.75

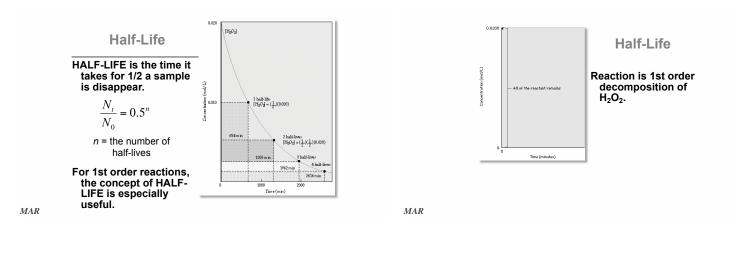
MAR

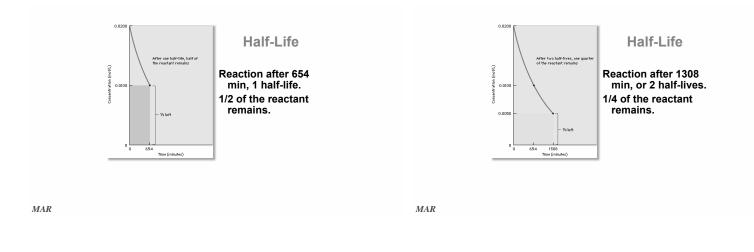


Data of conc. vs. time plot do not fit straight line.

Plot of ln [N₂O₅] vs. time is a straight line!

MAR


(2nd order gives straight line for plot of 1/[R] vs. time; zero order [R] vs. time) - see <u>Handout</u>


MAR

Using the Rate Laws

	Characteristic	Properties of Reactions	of the Type " R —	ightarrow Produ	:ts″
Order	Rate Equation	Integrated Rate Equation	Straight-Line Plot	Slope	k Units
0	$-\Delta[\mathbf{R}]/\Delta \mathbf{T} = k[\mathbf{R}]^0$	$[\mathbf{R}]_0 - [\mathbf{R}]_t = kt$	[R] _t vs. t	-k	mol/L ∙ time
1	$-\Delta[\mathbf{R}]/\Delta \mathbf{T} = k[\mathbf{R}]^1$	$\ln ([R]_t/[R]_0) = -kt$	ln [R] _t vs. t	-k	time ⁻¹
2	$-\Delta[\mathbf{R}]/\Delta \mathbf{T} = k[\mathbf{R}]^2$	$(1/[R]_t) - (1/[R]_0) = kt$	$1/[R]_t$ vs. t	k	L/mol∙time

Also see the "Kinetics Cheat Sheet" Handout

Page III-12-6 / Chapter Twelve Lecture Notes

MAR

Half-Life

Sugar is fermented in a 1st order process (using an enzyme as a catalyst).

sugar + enzyme --> products Rate of disappear of sugar = k[sugar] k = 3.3 x 10⁻⁴ sec⁻¹

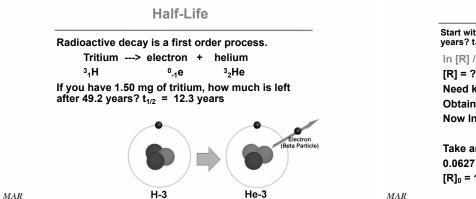
What is the half-life of this reaction?

Half-Life

Half-Life

Rate = k[sugar] and k = 3.3×10^{-4} sec⁻¹. Half-life is 35 min. Start with 10.00 g sugar. How much is left after 2 hr and 20 min? (t_{1/2} = 0.693 / k)

Two Solution pathways - The "CH 104" method:


2 hr and 20 min = 4 half-lives			
Half-life	Time Elapsed	Mass Left	
1st	35 min	5.00 g	
2nd	70	2.50 g	
3rd	105	1.25 g	
4th	140	0.625 g answer	

MAR

Rate = k[sugar] and k = 3.3×10^{-4} sec ⁻¹ . Half-life is 35 min. Start with 10.00 g sugar. How much is left after 2 hr and 20 min? ($t_{1/2} = 0.693 / k$)
Two Solution Pathways - The "CH 222" Method:
Convert 2 hrs 20 min to 8400 seconds
In (R / 10.00 g) = - (3.3 x 10 ⁻⁴ sec ⁻¹)(8400 s)
In (R / 10.00 g) = - 2.772
Take antilog: (R / 10.00 g) = e ^{-2.772} = 0.0625
R = 10.00 g * 0.0625 = 0.625 g
CH 222 Method recommended

CH 222 Method recommended, not limited to whole number of half-lives, etc. e = "Euler's number" in math = 2.71828...

Half-Life

 $\begin{array}{l} \mbox{Start with 1.50 mg of tritium, how much is left after 49.2 years? } t_{1/2} = 12.3 years \\ \mbox{In [R] / [R]_0 = -kt} \\ \mbox{[R] = ? [R]_0 = 1.50 mg } t = 49.2 yrs \\ \mbox{Need } k, so we calc k from: k = 0.693 / $t_{1/2}$ \\ \mbox{Obtain } k = 0.0564 y^{-1} \\ \mbox{Now In [R] / [R]_0 = -kt = -(0.0564 y^{-1}) \cdot (49.2 y) \\ = -2.77 \\ \mbox{Take antilog: [R] / [R]_0 = $e^{-2.77} = 0.0627$ \\ \mbox{0.0627 is the fraction remaining} \\ \mbox{[R]_0 = 1.50 mg, so [R] = 1.50*0.0627 = 0.0941 mg \\ \end{array}$

 $\tau_{1/2} = 0.693 / K$ All biological, radioactive processes first order, most useful

Half-Life for second order reactions:

$$t_{1/2} = 1 / (k[A]_0)$$

Half-Life for zero order reactions: $t_{1/2} = [A]_0 / 2k$

MAR

Half-Lives of Radioactive Elements

Rate of decay of radioactive is terms of half-life (t _{1/2}).	otopes given in
²³⁸ U> ²³⁴ Th + He	4.5 x 10 ⁹ y
¹⁴ C> ¹⁴ N + beta	5730 y
¹³¹ I> ¹³¹ Xe + beta	8.05 d
Element 106 - seaborgium ²⁶³ Sg> ²⁵⁹ Rf + He	0.8 s
Element 111 - roentgenium ²⁷² Rg> ²⁶⁸ Mt + He	0.0015 s

MAR

Half-life also used in medicine; $t_{1/2}$ caffeine = 3.5 hours in the body

MECHANISMS A Microscopic View of Reactions

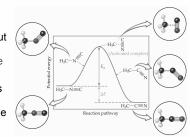
How are reactants converted to products at the molecular level?

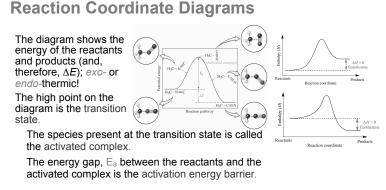
We want to connect the

RATE LAW to the MECHANISM

the experiment to the theory

MAR

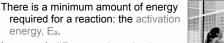

[A]₀ is the initial concentration of


the reactant

Reaction Coordinate Diagrams

visualize energy changes throughout a process on a reaction coordinate diagram.

the rearrangement of methyl isocyanide to methyl cyanide (acetonitrile).



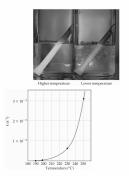
MAR

It is helpful to

This diagrams shows

MAR

Activation Energy


In general, differences in activation energy are the reason reactions vary from fast to slow.

An analogy to chemical activation energy. In order for the volley ball to go over the net, the player must give it sufficient energy.

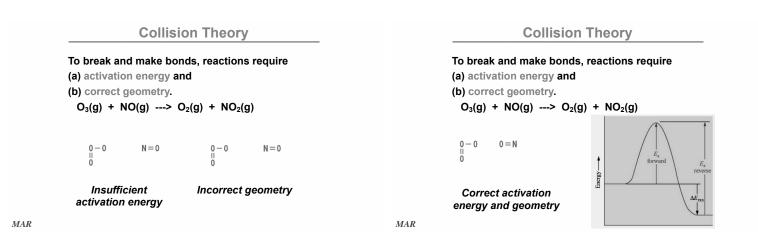
Temperature and Rate

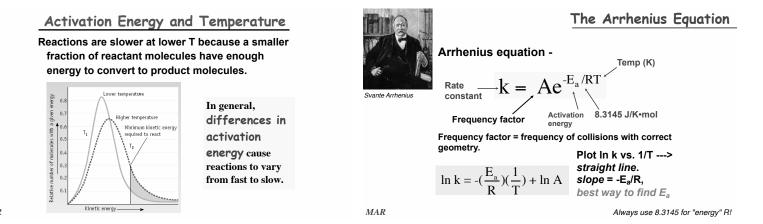
MAR

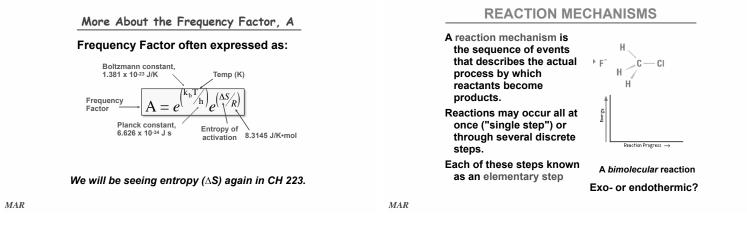
Generally, as temperature increases, so does the reaction rate.

This is because k is temperature dependent.

Find activation energy through changes in temperature.


Effect of Temperature



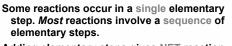

MAR

Iodine clock reaction H₂O₂ + 2 I⁻ + 2 H⁺ --> 2 H₂O + I₂

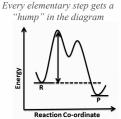
MOLECULARITY

The molecularity of a process tells how many molecules are involved in the elementary step. UNIMOLECULAR - only one reactant is

involved. BIMOLECULAR - two different molecules


must collide

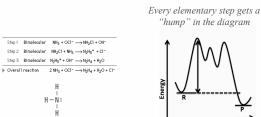
TERMOLECULAR - three different molecules collide


Elementary Reactions and Their Rate Laws		
Molecularity	Elementary Reaction	Rate Law
<i>Uni</i> molecular	$A \longrightarrow products$	Rate $= k[A]$
Bimolecular	$A + A \longrightarrow products$	Rate = $k[A]^2$
Bimolecular	$A + B \longrightarrow products$	Rate $= k[A][B]$
Termolecular	$A + A + A \longrightarrow$ products	Rate = $k[A]^3$
Termolecular	$A + A + B \longrightarrow products$	Rate = $k[A]^2[B]$
Termolecular	$A + B + C \longrightarrow products$	Rate $= k[A][B][C]$

MAR

MECHANISMS

Adding elementary steps gives NET reaction.



MAR

MECHANISMS

Most reactions involve a sequence of elementary steps.

Adding elementary steps gives NET reaction.

Reaction Co-ordinate

MAR

Mechanisms

In multistep mechanisms, one step will be slower than all others - this is the rate determining step (rds).

Most reactions involve a sequence of elementary steps. *Example:*

2 I⁻ + HOOH + 2 H⁺ ---> I₂ + 2 H₂O Rate = k [I⁻] [H₂O₂]

Note that the **rate law comes from experiment**. Also note that order of reactants in rate law not necessarily the same as stoichiometric coefficients!

MECHANISMS

2 I' + HOOH + 2 H+ ---> I₂ + 2 H₂O Rate = k [I-] [HOOH]

A scientist proposes the following mechanism for this reaction:

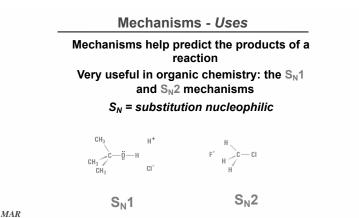
Step 3 - fast	2 OH ⁻ + 2 H ⁺ > 2 H ₂ O
Step 2 - fast	HOI + I [.] > I_2 + OH [.]
Step 1 - slow	$HOOH + I \rightarrow HOI + OH$

Note that H⁺ not involved in slow step, so [H⁺] is not in the rate law (a zero order reactant.)

Bimolecular slow step reflected in the rate law; this is a legitimate mechanism.

MAR

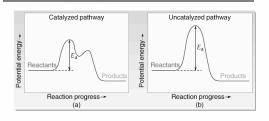
2 I + HOOH + 2 H+ ---> I₂ + 2 H₂O Rate = k [I-] [HOOH] Step 1 - slow HOOH + I --> HOI + OH Step 2 - fast HOI + I --> I₂ + OH Step 3 - fast 2 OH- + 2 H+ --> 2 H₂O

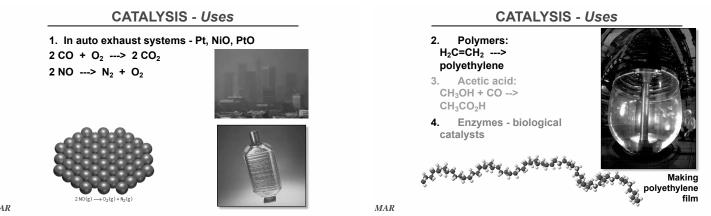


Step 1 is bimolecular and involves I- and HOOH. Therefore, this predicts the rate law should be Rate α [I-] [HOOH] - as observed!!

The species HOI and OH- are reaction

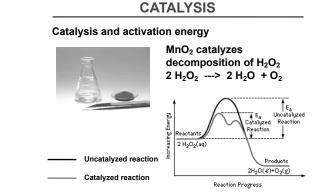
intermediates; critical for providing evidence for or against a proposed mechanism. See: Reaction Mechanisms Guide

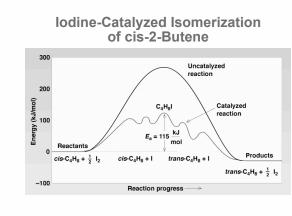

MAR



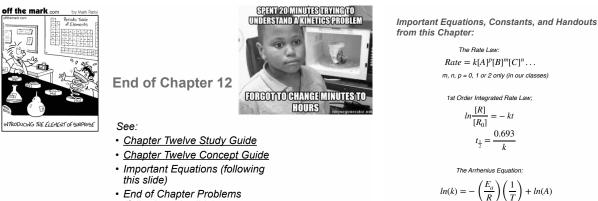
MAR

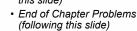
CATALYSIS


Catalysts speed up reactions by altering the mechanism to lower the activation energy barrier.



MAR


MAR



End of Chapter Problems: Test Yourself

- 1. The reaction between ozone and nitrogen dioxide at 231 K is first order in both NO₂ and O₃: $2 \text{ NO}_2(g) + O_3(g) \rightarrow N_2O_5(s) + O_2(g)$ Write the rate equation for the reaction. If the concentration of NO₂ is tripled, what is the
- After 2.57 h at 27 °C, a first order sucrose concentration decreased from 0.0146 M to 0.0132 M. Find the rate constant, *k*. 2. 3.
- 0.0146 M to 0.0132 M. Find the rate constant, K. The compound Xe(CF₃) decomposes in a first-order reaction to elemental Xe with a half-life of 30. min. If you place 7.50 mg of Xe(CF₃)₂ in a flask, how long must you wait until only 0.25 mg of Xe(CF₃)₂ remains? Gaseous NO₂ decomposes at 573 K: 2 NO₂(g) \rightarrow 2 NO(g) + O₂(g) The concentration of NO₂ was measured as a function of time. A graph of 1/ 4.
- $[NO_2]$ versus time gives a straight line with a slope of 1.1 L/mol.s. What is the rate law for this reaction? What is the rate constant k?
- by the rate law lob tills reaction? What is the rate constant k? S What is the rate law for the following *elementary* reaction: NO(g) + NO₃(g) → 2 NO₂(g) 6. For a reaction, In k versus 1/T(K) is plotted, and the linear regression line is: y = -6373.3x + 18.19, r = -0.997 What is the activation energy for this reaction?

MAR

End of Chapter Problems: Answers Rate = k[NO2][O3]; tripling NO triples the rate. 0.0392 h^{-1}

- 2.
- 150 min Rate = $k[NO_2]^2$, k = 1.1 L/mol·s Rate = $k[NO][NO_3]$ 3. 4. 5.
- 6. 53.0 kJ/mol

- - R = 8.3145 J/mol·K "Kinetics Cheat Sheet"
 - handout
 - "Reactions Mechanisms" handout

Kinetics: rate, rate law, orders of reaction, the rate constant (k), 1st vs. 2nd. vs. zero order, half life, mechanism, elementary reaction, bimolecular (and uniand ter-molecular), Arrhenius equation, activation energy, frequency factor, mechanism, intermediate, catalyst, rds (rate determining step)