

Some Definitions

A solution is a
HOMOGENEOUS mixture of 2 or more substances in a single phase.
Solutions, Colloids and Suspensions are all examples of homogenous mixtures
Solutions most important to chemists

Definitions

Solutions can be classified as unsaturated or saturated.

A saturated solution contains the maximum quantity of solute that dissolves at that temperature.

Solution Behavior

Why does a raw egg swell or shrink when placed in different solutions?

Some Definitions

A SOLUTION has at least two constituents
One constituent is usually regarded as the SOLVENT and the others as SOLUTES
So a SOLUTION = SOLUTE + SOLVENT

State of Solution	State of Solvent	State of Solute	Example
Gas	Gas	Gas	Air
Liquid	Liquid	Gas	Oxygen in water
Liquid	Liquid	Liquid	Alcohol in water
Liquid	Liiuid	Solid	Salt in water
Solid	Solid	Gas	Hydrogen in palladium
Solid	Solid	Liquid	Mercury in silver
Solid	Solid	Solid	Silver in gold

MAR

Definitions

SUPERSATURATED SOLUTIONS contain more than is possible and are unstable.
Unstable solutions;
crystallization can usually be
 stimulated by adding a "seed crystal" or scratching the side of the flask.

Solution Definitions

Miscible: Two (or more) liquids that are completely soluble in each other
Solubility: A measure of how much solute will dissolve in a solvent at a specific temperature

Factors Affecting Solubility

Chemists use the axiom "like dissolves like"
-The closer the intermolecular forces of two phases of matter, the more likely they will dissolve to make a solution
-Polar substances tend to dissolve in polar solvents.
-Nonpolar substances tend to dissolve in nonpolar solvents.

Factors Affecting Solubility

"Like dissolves like"
Example: water (polar, H-bonds) dissolves in acetone (polar)
Example: benzene (ID-ID) dissolves in toluene (ID-ID)
Example: benzene (ID-ID) does not dissolve very well in water (polar, H-bonds)

See Solubility Handout

Dissolving Gases \&
Henry's Law

Gas solubility $(M)=S_{g}=k \cdot P_{g}$
k for $\mathrm{O}_{2}=1.66 \times 10^{-6} \mathrm{M} / \mathrm{mm} \mathrm{Hg}$
When P_{g} drops, solubility drops.

Temperature and Solubility

Generally, the solubility of solid solutes in liquid solvents increases with increasing temperature.

Temperature and Solubility

The opposite is true for gases.
Carbonated soft drinks are more "bubbly" if stored in the refrigerator.
Warm lakes have less O_{2} dissolved in them than cool lakes.

Concentration Units

- MOLE FRACTION, X

For a mixture of A, B, and C
$\mathrm{X}_{A}=\operatorname{mol}$ fraction $\mathrm{A}=\frac{\mathrm{mol} \mathrm{A}}{\mathrm{mol} \mathrm{A}+\operatorname{mol~B}+\operatorname{mol~C}}$

- MOLALITY, m

$$
\mathrm{m} \text { of solute }=\frac{\text { mol solute }}{\text { kilograms solvent }}
$$

- WEIGHT \% = grams solute per total g in solution see Concentration Units Handout

Calculating Concentrations

Dissolve 62.1 g (1.00 mol) of ethylene glycol in 250. g of $\mathrm{H}_{2} \mathrm{O}$. Calculate X, m, and \% of glycol.
250. $\mathrm{g} \mathrm{H}_{2} \mathrm{O}=13.9 \mathrm{~mol}$

$$
\begin{aligned}
& \mathrm{X}_{\text {glycol }}=\frac{1.00 \mathrm{molg} \text { glycol }}{1.00 \mathrm{~mol} \mathrm{glycol}+13.9 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}} \\
& \mathrm{X}_{\text {glycol }}=\mathbf{0 . 0 6 7 2} \\
& \mathrm{X}_{\text {water }}=1-0.0672=\mathbf{0 . 9 3 2 8}
\end{aligned}
$$

Colligative Properties

On adding a solute to a solvent, the solvent properties are modified.

- Vapor pressure decreases
- Melting point decreases
- Boiling point increases

HEY, MOLE
WHAT ARE WHAT ARE
COLIGATIVE PROPERTIES?

- Osmosis is possible (osmotic pressure)

These changes are called COLLIGATIVE PROPERTIES.
They depend only on the NUMBER of solute particles relative to solvent particles, not on the KIND of solute particles. We need new
MAR concentration units! (more than molarity, M)

Calculating Concentrations

Dissolve $62.1 \mathrm{~g}(1.00 \mathrm{~mol})$ of ethylene glycol in 250. g of $\mathrm{H}_{2} \mathrm{O}$. Calculate mol fraction, molality, and weight $\%$ of glycol.

MAR

Calculating Concentrations

Dissolve 62.1 g (1.00 mol) of ethylene glycol in 250. g of $\mathrm{H}_{2} \mathrm{O}$. Calculate X, m, and \% of glycol.

Calculate molality

molality $=\frac{1.00 \mathrm{~mol} \mathrm{glycol}}{0.250 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}}=4.00 \mathrm{~m}$
Calculate weight \%

$$
\begin{aligned}
\% \text { glycol } & =\frac{62.1 \mathrm{~g}}{62.1 \mathrm{~g}+250 . \mathrm{g}} \times 100 \%=19.9 \% \\
\% \text { water } & =100 \%-19.9 \%=80.1 \%
\end{aligned}
$$

M vs m, X and wt\% Converting between molality (m), mole fraction (X) and weight percent (wt\%) relatively straightforward

Molarity (M) = mol solute per Liter of solution

Converting from m, X or $\mathrm{wt} \%$ to molarity (M) requires solution density in units of $\mathbf{g} / \mathbf{m L}$ or $\mathbf{g} / \mathbf{c m}^{3}$
Recall: solution $=$ solute + solvent
MAR

M vs m, X and wt\%
Example: Convert a 10.7 m aqueous NaOH solution to X , $\mathbf{w t} \%$ and M if the solution density $=1.33 \mathrm{~g} / \mathrm{cm}^{3}$.
$\mathrm{X}_{\text {NаОн }}=10.7 /(10.7+55.5)=0.162$
$w t \%_{\mathrm{NaOH}}=428 /(1000+428) * 100 \%$
$w^{w t} \%_{\mathrm{NaOH}}=30.0 \%$

You do not need the density of the solution to calculate wt\% and X from molality!

Parts Per Million (ppm)

Expresses very dilute concentrations; used by environmental chemists, biologists, geologists, etc.
$1.0 \mathrm{ppm}=1.0 \mathrm{~g}$ of a substance in a sample with a total mass of 1.0 million (10^{6}) g
Density of water about $1.0 \mathrm{~g} / \mathrm{mL}$, units often interconverted
Also parts per thousand (ppt), parts per billion (ppb), etc.

Different than the lab parts per thousand, which is a measure of precision

MAR

M vs m, X and wt\%
Example: Convert a 10.7 m aqueous NaOH solution to $\mathrm{x}, \mathrm{wt} \%$ and M if the solution density $=1.33 \mathrm{~g} / \mathrm{cm}^{3}$.
If we have 1000 g of solvent $\left(\mathrm{H}_{2} \mathrm{O}\right)$,
then we have 428 g of solute (NaOH) or 1428 g of solution $\left(\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O}\right)$

Volume of solution $=1428 \mathrm{~g}$ * $\left(\mathrm{cm}^{3} / 1.33 \mathrm{~g}\right)$
Volume of solution $=1070 \mathrm{~mL}=1.07 \mathrm{~L}$
Molarity $=10.7 \mathbf{~ m o l ~ N a O H ~ / ~ 1 . 0 7 ~ L ~ s o l u t i o n ~}$ Molarity $\mathrm{NaOH}=10.0 \mathrm{M}$
see Concentration Units Handout

Understanding

Colligative Properties
Vapor Pressure of $\mathrm{H}_{2} \mathrm{O}$ over a solution depends on the number of $\mathrm{H}_{2} \mathrm{O}$ molecules per solute molecule.
$\mathbf{P}_{\text {solvent }}$ proportional to $\mathrm{X}_{\text {solvent }}$
or
$\mathbf{P}_{\text {solvent }}=\mathrm{X}_{\text {solvent }} \cdot \mathrm{P}_{\text {solvent }}$

Vapor Pressure of solvent over solution = (Mol frac solvent)•(VP pure solvent)
RAOULT'S LAW: The vapor pressure of solvent over a solution is always LOWER than the pure solvent!

Raoult's Law

Previous examples assumed a non-volatile solute to calculate vapor pressure. If solute is volatile, then:
$P_{\text {total }}=X_{A} \cdot \mathrm{Po}_{\mathrm{A}}+\mathrm{X}_{\mathrm{B}} \cdot \mathrm{Po}_{\mathrm{B}}+\mathrm{X}_{\mathrm{C}} \cdot \mathrm{Po}_{\mathrm{C}}+\ldots$
Example: At $25{ }^{\circ} \mathrm{C}$, heptane ($\mathrm{P} \circ=31$ torr) and octane ($\mathrm{P}^{\circ}=11$ torr) are mixed such that $X_{\text {heptane }}=0.15$. Calculate the total vapor pressure of the system.
Solution: This is a two component system.

$$
\begin{aligned}
& \text { If } X_{\text {heptane }}=0.15, \text { then } \\
& X_{\text {octane }}=1-0.15=0.85
\end{aligned}
$$ solution is higher than that of the pure solvent.

MAR

Elevation of Boiling Point
 Elevation in $B P=\Delta T_{B P}=K_{B P} \bullet m$

(where $K_{B P}$ is characteristic of solvent)

Change in Boiling Point

Dissolve 62.1 g of glycol (1.00 mol) in $250 . \mathrm{g}$ of water. What is the BP of the solution?
$\mathrm{K}_{\mathrm{BP}}=0.512{ }^{\circ} \mathrm{C} /$ molal for water (see Textbook)
Solution

1. Calculate solution molality $=4.00 \mathrm{~m}$
2. $\Delta \mathrm{T}_{\mathrm{BP}}=\mathrm{K}_{\mathrm{BP}} \cdot \mathrm{m}$
$\Delta \mathrm{T}_{\mathrm{BP}}=0.512{ }^{\circ} \mathrm{C} / \mathrm{molal}(4.00$ molal)
$\Delta \mathrm{T}_{\mathrm{BP}}=2.05{ }^{\circ} \mathrm{C}$
$B P=100.00+2.05=102.05{ }^{\circ} \mathrm{C}$

MAR

The freezing point of a solution is lower than that of the pure solvent.

The freezing point of a solution is LOWER than that of the pure solvent.
Notice how the animations incorrectly use "dense" ice!

Freezing Point Depression of Electrolytes

How much NaCl must be dissolved in 4.00 kg of water to lower FP to $-10.00{ }^{\circ} \mathrm{C}$?
Solution
Calculate required molality
$\Delta \mathrm{T}_{\mathrm{FP}}=\mathrm{K}_{\mathrm{FP}} \cdot \mathrm{m}$
$\left(0--10.00{ }^{\circ} \mathrm{C}\right)=\left(1.86{ }^{\circ} \mathrm{C} / \mathrm{molal}\right) \cdot \mathrm{m}$
$\mathrm{m}=5.38 \mathrm{molal}$

Use -10 ${ }^{\circ} \mathrm{C}$ for ΔT if $-1.86{ }^{\circ} \mathrm{C} / m$

Freezing Point Depression of Electrolytes
How much NaCl must be dissolved in 4.00 kg of water to lower FP to $-10.00{ }^{\circ} \mathrm{C}$?
Solution
Concentration required $=5.38$ molal
This means we need 5.38 mol of dissolved particles per kg of solvent.
Recognize that m represents the total concentration of all dissolved particles.
Recall that $1 \mathrm{~mol} \mathrm{NaCl}(\mathrm{aq})$
--> $1 \mathrm{~mol} \mathrm{Na}^{+}(\mathrm{aq})+1 \mathrm{~mol} \mathrm{Cl}-(\mathrm{aq}) \ldots$ or: 2 mol of particles per 1 mol of ionic solute!

Freezing Point Depression of Electrolytes

How much NaCl must be dissolved in 4.00 kg of water to lower FP to $-10.00{ }^{\circ} \mathrm{C}$?
Solution
Concentration required $=5.38$ molal
We need 5.38 mol of dissolved particles per kg of solvent. $\mathrm{NaCl}(\mathrm{aq})$--> $\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}(\mathrm{aq})$

2 particles per mol NaCl !
To get $5.38 \mathrm{~mol} / \mathrm{kg}$ of particles we need
$5.38 \mathrm{~mol} / 2=2.69 \mathrm{~mol} \mathrm{NaCl} / \mathrm{kg}$
$2.69 \mathrm{~mol} \mathrm{NaCl} / \mathrm{kg}$---> $157 \mathrm{~g} \mathrm{NaCl} / \mathrm{kg}$
$(157 \mathrm{~g} \mathrm{NaCl} / \mathrm{kg}) \cdot(4.00 \mathrm{~kg})=629 \mathrm{~g} \mathrm{NaCl}$

Colligative Properties and Molar Mass

Can use colligative properties to find molar mass of solute Molar mass = grams solute $/ \mathrm{moles}$ solute
Example: Find the molar mass of azulene if 0.640 g are dissolved in 99.0 g of benzene ($\mathrm{k}_{\mathrm{b}}=2.53^{\circ} \mathrm{C} / \mathrm{m}$), and the observed boiling point is $80.230^{\circ} \mathrm{C}$. (normal bp $=80.100{ }^{\circ} \mathrm{C}$)

Osmosis

MM = (grams solute * k)/($\Delta \mathrm{T}^{*} \mathrm{~kg}$ solvent) Solution: useful for both bp and fp calculations
$\Delta T=(80.230-80.100)=0.130^{\circ} \mathrm{C}$
$\mathrm{m}=\Delta \mathrm{T} / \mathrm{k}_{\mathrm{b}}=0.130^{\circ} \mathrm{C} / 2.53^{\circ} \mathrm{C} / \mathrm{m}=5.14^{\star} 10^{-2} \mathrm{~mol} / \mathrm{kg}$
$0.0990 \mathrm{~kg}{ }^{*} 5.14^{*} 10^{-2} \mathrm{~mol} / \mathrm{kg}$ solvent $=5.05^{*} 10^{-3} \mathrm{~mol}$
Molar mass $=$ grams solute $/$ moles solute
Molar mass $=0.640 \mathrm{~g} / 5.05^{*} 10^{-3}$ moles $=127 \mathrm{~g} \mathrm{~mol}^{-1}$

MAR

Osmosis

The semipermeable membrane allows only the movement of solvent molecules.

Solvent molecules move from pure solvent to solution in an attempt to make both have the same concentration of solute.

Driving force is entropy (CH 223)

Boiling Point Elevation and

 Freezing Point Depression

A generally useful equation
i = van't Hoff factor = number of particles produced per formula unit.

Compound	Theoretical Value of i
glycol	1
NaCl	2
CaCl_{2}	3

We will use the theoretical value of i in CH 222

Osmosis Calculating a Molar Mass

Dissolve 35.0 g of hemoglobin in enough water to make 1.00 L of solution. π measured to be 10.0 mm Hg at $25^{\circ} \mathrm{C}$. Calc. molar mass of hemoglobin.
Solution
(a) Calc. π in atmospheres $\pi=10.0 \mathrm{~mm} \mathrm{Hg} \cdot(1 \mathrm{~atm} / \mathbf{7 6 0} \mathrm{mm} \mathrm{Hg})$ $\pi=0.0132 \mathrm{~atm}$

Osmosis

Calculating a Molar Mass

Dissolve 35.0 g of hemoglobin in enough water to make 1.00 L of solution. π measured to be 10.0 mm Hg at $25{ }^{\circ} \mathrm{C}$. Calc. molar mass of hemoglobin.
Solution
(b) Calc. concentration from $\pi=\mathrm{cRT}$

Conc $=\frac{0.0132 \mathrm{~atm}}{(0.082057 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{K} \cdot \mathrm{mol})(298 \mathrm{~K})}$
Conc $=5.40 \times 10^{-4} \mathrm{~mol} / \mathrm{L}(* 1 \mathrm{~L})$
(c) Calc. molar mass

Molar mass $=35.0 \mathrm{~g} / 5.40 \times 10^{-4} \mathrm{~mol}$
Molar mass $=64,800 \mathrm{~g} / \mathrm{mol}$

Osmosis

$8=\mathrm{H}_{2} \mathrm{O}$

Reverse Osmosis Water Desalination

The Tyndall Effect

Colloids

Colloids have a dispersed phase ("solute") and a dispersing medium ("solvent"). Many types of colloids:

Type	D Medium	D Phase	Examples
aerosol	gas	liquid	fog, clouds
aerosol	gas	solid	smoke, viruses
foam	liquid	gas	shaving cream
emulsion	liquid	liquid	milk, mayonnaise
sol	liquid	solid	mud, paint, ink
foam	solid	gas	foam rubber, sponge
gel	solid	liquid	jelly, cheese, yogurt
solid sol	solid	solid	steel, bronze, pearls

MAR

Other Homogeneous Mixtures

Homogeneous mixtures: more than just solutions!

- Solutions - most important, particles in the range $0.2-2 \mathrm{~nm}$ in diameter (salt water, acids, etc.)
- Colloids - a "solution" with particles in the range 2-1000 nm (milk, fog, etc.)
- Suspensions - contain particles greater than 1000 nm in diameter (blood, paint, aerosol sprays, etc.)

MAR

The Tyndall Effect

Surfactant Emulsifying Agents

Surfactants (or Surfactant Emulsifying Agents) promote the formation of colloids by coating dispersed phase, preventing the formation of large particles.
Surfactants used for cleaning called detergents.

Surfactant Emulsifying Agents

Soaps and detergents: surfactants with both a hydrophobic (nonpolar) and a hydrophilic (polar) end. Can remove nonpolar oils and polar compounds. Soaps often grouped in micelles with like-polarities grouped together.

Oil and Water
Oil and water do not mix due to differences in polarity; water excludes oil due to stronger intermolecular forces
Soap removes oil readily using nonpolar end of micelle

MAR

when someone asks

See:

- Chapter Eleven Study Guide
- Chapter Eleven Concept Guide
- Important Equations (following this slide)
- End of Chapter Problems (following this slide)
MAR

End of Chapter 11

Important Equations, Constants, and Handouts

from this Chapter:	Henry's Law:
- solution = solute + solvent	$S_{g}=k \bullet P_{g}$
- see Concentration Units Handout	

- see Concentration Units Handout

Raoult's Law / Vapor Pressure Depression:
mol Soluto

$$
P_{\text {solvent }}=\chi_{\text {solvent }} \bullet P_{\text {solvent }}^{o}
$$

$$
\text { Molarity }(M)=\frac{\text { mol Solute }}{L \text { Solution }}
$$

$$
\text { molality }(m)=\frac{\text { mol Solute }}{k g \text { Solvent }}
$$

Boiling Point Elevation /
Freezing Point Depression:

$$
\text { weight } \%=\frac{\text { mass Solute }}{\text { Total mass }}
$$

$$
\Delta T_{B P / F P}=K_{B P / F P} \cdot\left(\frac{\text { mol Solute }}{k g \text { Solvent }}\right) \cdot i
$$

Osmosis:

$$
\text { mole fraction }(\chi)=\frac{\text { mol } A}{\text { total mol }}
$$

$$
\pi=i\left(\frac{\text { mol Solute }}{L \text { Solvent }}\right) R T
$$

$M A R$

$$
p p m=\frac{1.0 \mathrm{~g} \text { of substance }}{1.0 \text { million } \mathrm{g} \text { sample }}
$$

$$
\begin{aligned}
&=0.082057 \mathrm{Latm} \mathrm{~mol}-1 \\
& i=\text { van't Hoff factor }
\end{aligned}
$$

2. Hydrochloric acid is sold as a concentrated aqueous solution. If the molarity of commercial HCl is 12.0 and its density is $1.18 \mathrm{~g} / \mathrm{cm} 3$, calculate the molality and the weight percent of HCl in the solution
3. A soda can has an aqueous CO_{2} concentration of 0.0506 M . What is the pressure of CO_{2} gas in the can? ($\left.\mathrm{k}_{\mathrm{H}}=4.48 \times 10^{-5} \mathrm{M} / \mathrm{mm} \mathrm{Hg}\right)$
4. Pure nonvolatile iodine (105 g) is dissolved in 325 g of CCl_{4} at $65^{\circ} \mathrm{C}$. Given that the vapor pressure of CCl_{4} at this temperature is 531 mm Hg , Given that the vapor pressure of CCl_{4} at this temper
what is the vapor pressure of the solution at $65^{\circ} \mathrm{C}$?
5. What is the boiling point of a solution composed of $15.0 \mathrm{~g} \mathrm{of}_{\mathrm{CHCl}}^{3}$ (which boils at $61.70^{\circ} \mathrm{C}$) and 0.515 g of the nonvolatile solute acenaphthene, boils at 6
$\mathrm{C}_{12} \mathrm{H}_{10}$?
6. An aqueous solution containing 1.00 g of bovine insulin (a protein, not ionized) per liter has an osmotic pressure of 3.1 mm Hg at $25^{\circ} \mathrm{C}$. ionized) per liter has an osmotic pressure of
Calculate the molar mass of bovine insulin.

2. $16.2 \mathrm{~m}, 37.1 \%$
3. 1130 mm Hg
4. 444 mm Hg
5. $62.51^{\circ} \mathrm{C}$
6. $6.0 \times 10^{3} \mathrm{~g} / \mathrm{mol}$

