Gases and Their Properties
Chapter 9

Chemistry 222 Professor Michael Russell

Importance of Gases

Airbags fill with \mathbf{N}_{2} gas in an accident.
Gas is generated by the decomposition of sodium azide, NaN_{3}.
$2 \mathrm{NaN}_{3(\mathrm{~s})}--->2 \mathrm{Na}_{(\mathrm{s})}+3 \mathrm{~N}_{2(\mathrm{~g})}$

MAR

THREE STATES OF MATTER

Properties of Gases


```
Gas properties can be modeled using math. Model depends on:
- \(\mathrm{V}=\) volume of the gas ( L )
- \(T\) = temperature ( K )
- \(\mathrm{n}=\) amount (moles)
- \(P=\) pressure (atm)
modeled using math.
```


The Barometer

Pressure of air is measured with a BAROMETER (developed by Torricelli in 1643)
Hg rises in tube via atmosphere (pushing up), opposed by gravity (pulling down)
Barometer calibrated for column width, pool width, depth, Hg density, etc.

Boyle's Law

If \mathbf{n} and \mathbf{T} are constant, then
PV $=(n R T)=k$
This means, for example, that P goes up as V goes down, or:
$\mathrm{P}_{1} \mathbf{V}_{1}=\mathrm{P}_{\mathbf{2}} \mathbf{V}_{2}$

Robert Boyle (1627-1691). Son of Early of Cork, Ireland.

Charles's Law

If \boldsymbol{n} and P are constant, then
$\mathrm{V}=(\mathrm{nR} / \mathrm{P}) \mathbf{T}=\mathrm{k} T$
V and T are directly related, or:
$\mathrm{V}_{1} / \mathrm{T}_{1}=\mathrm{V}_{2} / \mathrm{T}_{2}$

Boyle's Law

Boyle's law states that the pressure and volume of a gas are inversely related

MAR

Charles's Law

Balloons immersed in liquid \mathbf{N}_{2} (at $-196{ }^{\circ} \mathrm{C}$) will shrink as the air cools (and is liquefied).

$2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

The gases in this experiment are all measured at the same T and P.

IDEAL GAS LAW

$\mathbf{P} \mathbf{V}=\mathbf{n} \mathbf{R} \mathbf{T}$

The constant of proportionality is known as R, the gas constant.	Units	Numerical Value
	L-atm/mol-K	0.082057
	J/mol-K*	8.3145
	$\mathrm{cal} / \mathrm{mol}-\mathrm{K}$	1.987
Memorize R! Always use 0.082057!	$\mathrm{m}^{3}-\mathrm{Pa} / \mathrm{mol}-\mathrm{K}^{*}$	8.3145
	L-torr/mol-K	62.36
We will also use 8.3145 later...	*SI unit	

Avogadro's Hypothesis

Equal volumes of gases at the same T and P have the same number of molecules.
$\mathrm{V}=(\mathrm{RT} / \mathrm{P}) \mathrm{n}=\mathrm{kn}$
V and n are directly related or:
$\mathrm{V}_{1} / \mathrm{n}_{1}=\mathrm{V}_{2} / \mathrm{n}_{2}$

twice as many molecules

MAR

IDEAL GAS LAW

Brings together gas properties.
Can be derived from experiment and theory.

MAR

Using PV = nRT

How much N_{2} is req'd to fill a small room with a volume of 960 . cubic feet (2.70 * $10^{4} \mathrm{~L}$) to $P=745 \mathrm{~mm} \mathrm{Hg}$ at $25^{\circ} \mathrm{C}$?
$\mathrm{R}=0.082057 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{K} \cdot \mathrm{mol}$
Solution
2. Now calc. $\mathbf{n}=\mathrm{PV} / \mathrm{RT}$

$$
\begin{aligned}
& n=\frac{(0.980 \mathrm{~atm})\left(2.70 \times 10^{4} \mathrm{~L}\right)}{(0.082057 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{K} \cdot \mathrm{~mol})(298 \mathrm{~K})} \\
& \mathrm{n}=\mathbf{1 . 0 8 \times 1 0 ^ { 3 } \mathbf { ~ m o l } (\mathbf { 3 0 . 3 } \mathbf { k g } \text { of } \mathrm { N } _ { 2 })}
\end{aligned}
$$

Gases and Stoichiometry

$2 \mathrm{H}_{2} \mathrm{O}_{2}$ (liq) ---> $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$

Decompose 1.1 g of $\mathrm{H}_{2} \mathrm{O}_{2}$ in a flask with a volume of 2.50 L . What is the pressure of O_{2} at $2{ }^{\circ} \mathrm{C}$? $\mathrm{Of} \mathrm{H}_{2} \mathrm{O}$?
Solution
Strategy:

- Calculate moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ and then moles of O_{2} and $\mathrm{H}_{2} \mathrm{O}$.
- Finally, calc. P from n, R, T, and V.

Gases and Stoichiometry

$2 \mathrm{H}_{2} \mathrm{O}_{2}$ (liq) $-->2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$

Decompose 1.1 g of $\mathrm{H}_{2} \mathrm{O}_{2}$ in a flask with a volume of 2.50 L . What is the pressure of O_{2} at $25^{\circ} \mathrm{C}$? Of $\mathrm{H}_{2} \mathrm{O}$?
Solution
P of $\mathrm{O}_{2}=\mathrm{nRT} / \mathrm{V}$
$=\frac{(0.016 \mathrm{~mol})(0.082057 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{K} \cdot \mathrm{mol})(298 \mathrm{~K})}{2.50 \mathrm{~L}}$
P of $\mathrm{O}_{2}=0.16 \mathrm{~atm}$

Gases and Stoichiometry

$2 \mathrm{H}_{2} \mathrm{O}_{2}$ (liq) ---> $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
Decompose 1.1 g of $\mathrm{H}_{2} \mathrm{O}_{2}$ in a flask with a volume of 2.50 L . What is the pressure of O_{2} at $25^{\circ} \mathrm{C}$? Of $\mathrm{H}_{2} \mathrm{O}$?

Bombardier beetle uses decomposition of hydrogen peroxide to defend itself.

Gases and Stoichiometry

$2 \mathrm{H}_{2} \mathrm{O}_{\mathbf{2}}$ (liq) ---> $2 \mathrm{H}_{\mathbf{2}} \mathrm{O}(\mathrm{g})+\mathrm{O}_{\mathbf{2}}(\mathrm{g})$

Decompose 1.1 g of $\mathrm{H}_{2} \mathrm{O}_{2}$ in a flask with a volume of 2.50 L . What is the pressure of O_{2} at $25^{\circ} \mathrm{C}$? Of $\mathrm{H}_{2} \mathrm{O}$?
Solution

$$
\begin{gathered}
1.1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}_{2} \cdot \frac{1 \mathrm{~mol}}{34.0 \mathrm{~g}}=0.032 \mathrm{~mol} \\
0.032 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}_{2} \cdot \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}_{2}}=0.016 \mathrm{~mol} \mathrm{O}
\end{gathered}
$$

Gases and Stoichiometry

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{liq}) ~--->2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

Solution
What is P of $\mathrm{H}_{2} \mathrm{O}$? Could calculate as above. But recall Avogadro's hypothesis.
$V \alpha n$ at same T and P, and
$P \alpha n$ at same T and V
There are 2 times as many moles of $\mathrm{H}_{2} \mathrm{O}$ as moles of O_{2}. P is proportional to n . Therefore, P of $\mathrm{H}_{2} \mathrm{O}$ is twice that of O_{2}.
P of $\mathrm{H}_{2} \mathrm{O}=0.32 \mathrm{~atm}$

Dalton's Law of Partial Pressures
$2 \mathrm{H}_{2} \mathrm{O}_{2}$ (liq) $-->2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$ $0.32 \mathrm{~atm} \quad 0.16 \mathrm{~atm}$ $\mathrm{P}_{\text {total }}$ in gas mixture $=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}+\ldots$
So:
$\mathrm{P}_{\text {total }}=\mathrm{P}\left(\mathrm{H}_{2} \mathrm{O}\right)+\mathrm{P}\left(\mathrm{O}_{2}\right)=0.48 \mathrm{~atm}$
Dalton's Law: total P equals sum of PARTIAL pressures.

KINETIC MOLECULAR THEORY

(KMT)
Theory used to explain gas laws. KMT assumptions are

- Gases consist of molecules in constant, random motion.
- P arises from collisions with container walls.
- No attractive or repulsive forces between molecules. Collisions elastic.
- Volume of molecules is negligible. see Principal Assumptions of KMT Handout

Kinetic Molecular Theory

We assume molecules of mass ($\mathbf{m}, \mathbf{k g} / \mathbf{m o l}$) are in motion (velocity, $\mathbf{v ,} \mathbf{m} / \mathbf{s}$), so they have kinetic energy (KE, J).

Molecules at the same temperature (\mathbf{T}, \mathbf{K}) also have the same kinetic energy, so:

$$
K E=1 / 2 m v^{2}=3 / 2 R T
$$

Note: this $R=8.3145 \mathrm{~J} / \mathrm{mol}^{* K}$ ("energy R ")
At the same T, all gases have the same average $K E$. As T goes up, KE also increases - and so does speed.

Standard Temperature and Pressure (STP)

A common reference point used in applications using gases

- Standard Temperature $=273.15 \mathrm{~K}$
- Standard Pressure $=1.000 \mathrm{~atm}$ and if 1.00 mol of gas used,
- Standard Volume $=22.4 \mathrm{~L}$
1.00 mol of an ideal gas occupies $22.4 L$ at 273 K and 1.00 atm of pressure!

Kinetic Molecular Theory
At the same T, all gases have the same average KE.
As T goes up, KE also increases - and so does speed.

Distribution of Gas Molecule Speeds

What is an "average" speed?

Velocity of Gas Molecules

Average velocity decreases with increasing mass.

Velocity of Gas Molecules

 Molecules of a given gas have a range of speeds.

GAS DIFFUSION AND EFFUSION

Molecules effuse through holes in a rubber balloon, for example, at a rate (= moles/time) that is

- proportional to T
- inversely proportional to M.

Therefore, He effuses more rapidly than O_{2} at same T .
GAS
DIFFUSION
AND EFFUSION

Gas Diffusion relation of mass to rate of diffusion

Gaseous diffusion of $\mathrm{NH}_{3}(\underline{g})$ and $\mathrm{HCl}(\mathrm{g})$

- HCl and NH_{3} diffuse from opposite ends of tube.
- Gases meet to form $\mathrm{NH}_{4} \mathrm{Cl}$
- HCl heavier than NH_{3}
- Therefore, $\mathrm{NH}_{4} \mathrm{Cl}$ forms closer to HCl end of tube.

Deviations from Ideal Gas Law

Real molecules have volume.
There are intermolecular forces.
Otherwise a gas
could not become a liquid.
High Pressure and Low Temperature conditions show greatest deviation

GAS DIFFUSION AND EFFUSION

Graham's law governs effusion and diffusion of gas molecules.
$\frac{\text { Rate for } A}{\text { Rate for } B}=\sqrt{\frac{M \text { of } B}{M \text { of } A}}$
Rate of effusion is inversely proportional to its molar mass.

MAR

Thomas Graham, 1805-1869. Professor in Glasgow and London.

Deviations from Ideal Gas Law

Account for volume of molecules and intermolecular forces with VAN DER WAAL'S EQUATION.

Substance	van der Wails Constants for Gas Molecules	
	$a\left(\mathrm{LL}^{2} \mathrm{a}\right.$ atm/mol2)	$b(\mathbb{L} / \mathrm{mol})$
He	0.0341	${ }_{0} 0.02370$
${ }^{\mathrm{Ne}}$	${ }^{0.211}$	${ }^{0.0071}$
$\mathrm{Ar}^{\text {r }}$	1.34	${ }^{0.0322}$
${ }_{\text {Kr }}$	${ }^{231}$	${ }^{0.0398}$
$\mathrm{Xe}_{\text {e }}$	4.19	${ }^{0.0510}$
H_{2}	${ }^{0.244}$	${ }_{0}^{0.0266}$
N_{2}	${ }_{1}^{139}$	${ }^{0.0331}$
O_{2}	1.36	${ }^{0.0318}$
$\mathrm{Cl}_{\substack{\mathrm{Cl}_{2} \\ \mathrm{H} \mathrm{O}}}$	6.49 5.46	${ }_{0}^{0.0 .0562}$
CH_{4}	2.25	${ }_{0.0428}^{0.035}$
CO_{2}	3.59	0.0427
CCl_{4}	20.4	0.1383

4.0 L tank at $27^{\circ} \mathrm{C}$.

Deviations from Ideal Gas Law

Cl_{2} gas has a $=6.49$,

$$
b=0.0562
$$

For $8.0 \mathrm{~mol} \mathrm{Cl}_{2}$ in a

End of Chapter 9

Important Equations, Constants, and Handouts from this Chapter:
$P V=n R T$

- $P M=d R T$
- mole $=6.022 \times 10^{23}$
- $760 \mathrm{~mm} \mathrm{Hg}=1 \mathrm{~atm}$
- $1013 \mathrm{mbar}=1 \mathrm{~atm}$
- metric prefixes (m, k, etc.)
- STP = 1 atm, 273.15 K
$\mathbf{R}=0.082057 \mathrm{~L}$ atm $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$ (the
"gas R")
$\mathbf{R}=8.3145 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ (the "energy R")
$K E=1 / 2 m v^{2}=3 / 2 R T$

1. A sample of nitrogen gas has a pressure of 67.5 mm Hg in a $500 . \mathrm{mL}$ flask. What is the pressure of this gas sample when it is transferred to a 125 mL flask at the same temperature?
2. You have 3.5 L of NO at a temperature of $22.0^{\circ} \mathrm{C}$. What volume would the NO occupy at $37^{\circ} \mathrm{C}$? (Assume the pressure is constant.)
3. An automobile cylinder has a volume of $400 . \mathrm{cm}^{3}$. The engine takes in air at a pressure of 1.00 atm and a temperature of $15^{\circ} \mathrm{C}$ and compresses the air to a volume of $50.0 \mathrm{~cm}^{3}$ at $77^{\circ} \mathrm{C}$. What is the final pressure of the gas in the cylinder?
4. A 1.25 g sample of CO_{2} is contained in a $750 . \mathrm{mL}$ flask at $22.5^{\circ} \mathrm{C}$. What is the pressure of the gas?
5. A gaseous organofluorine compound has a density of $0.355 \mathrm{~g} / \mathrm{L}$ at $17^{\circ} \mathrm{C}$ and 189 mm Hg . What is the molar mass of the compound?
6. Sodium azide, the explosive compound in automobile air bags, decomposes according to the following equation:
$2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}(\mathrm{s})+3 \mathrm{~N}_{2}(\mathrm{~g})$
What mass of sodium azide is required to provide the nitrogen needed to inflate a 75.0 L bag to a pressure of 1.3 atm at $25^{\circ} \mathrm{C}$?
