
Carbon: Not Just Another Element

Chapter 20: The Organic Chemistry chapter!

Organic Chemistry

Vast majority of over 20 million known compounds are based on Carbon: organic compounds.

Generally contain C, H + other elements


Two Major Concepts

NOMENCLATURE -

Naming the molecules correctly and knowing the general classes of organic compounds

REACTIVITY - Studying patterns of reactivity within classes of compounds

MAR

We will focus primarily on nomenclature but also show examples of reactivity MAR

Nomenclature

Need to know Alkyl Groups methyl = CH₃ ethyl = CH₃CH₂ propyl = CH₃CH₂CH₂ butyl = CH₃CH₂CH₂CH₂ Also pentyl, hexyl, heptyl, octyl, etc. R is "generic" alkyl group

Alkyl groups may be combined with other elements or alkyl groups to give classes of compounds

See the Organic Chemistry Nomenclature Guide

ALKANES

Generic Alkane Representation: R-H Generic Alkane Formula: C_nH_{2n+2} -yl +ane

> Ex: methane = CH_4 (methyl group + H) CH₃-H

ALKANES

Generic Alkane Representation: R-H Generic Alkane Formula: C_nH_{2n+2} -yl +ane

> Ex: ethane = CH_3CH_3 (ethyl group + H) CH₃CH₂-H

MAR MAR

ALKANES

Generic Alkane Representation: R-H Generic Alkane Formula: C_nH_{2n+2}

Ex: propane = CH₃CH₂CH₃ (propyl group + H) CH₃CH₂CH₂-H

ALKANES

Generic Alkane Representation: R-H Generic Alkane Formula: C_nH_{2n+2}

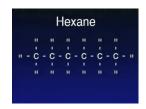
Ex: butane = CH₃CH₂CH₂CH₃ (butyl group + H) CH₃CH₂CH₂CH₂-H

Alkanes often called "saturated hydrocarbons" - all carbons "saturated" with H

MAR

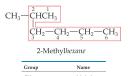
ALKANES - Isomers

But we can write butane in two ways:


These are isomers (same formula, structurally different). Name using "longest chain" alkane preceded by numbered alkyl groups

Isomers of Pentane *n*-pentane 2-methylbutane "3-methylbutane" would be incorrect - use smallest number possible

2,2-dimethylpropane

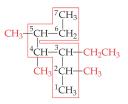

MAR

Isomers of Hexane

Number of isomers grows as number of carbons increases

How to Name a Compound

Group	Name
CH ₃ —	Methyl
CH ₃ CH ₂ —	Ethyl
CH ₃ CH ₂ CH ₂ —	Propyl
CH ₃ CH ₂ CH ₂ CH ₂ -	Butyl
CH ₃ HC— CH ₃	Isopropyl
CH₃ CH₃—C— CH₃	tert-Butyl


- 1. Find the longest chain in the molecule.
- Number the chain from the end nearest the first substituent encountered.
- List the substituents as a prefix along with the number(s) of the carbon(s) to which they are attached.

"Longest chain, smallest number"

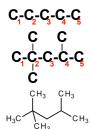
MAR

MAR

How to Name a Compound

If there is more than one type of substituent in the molecule, list them alphabetically.

3-Ethyl-2,4,5-trimethylheptane


MAR

MAR

"Longest chain, smallest number"

How to Create a Structure from a Name

Example: provide the structure for the following name: **2,2,4-trimethylpentane**

- 1. Start at the end of the name to find the chain of carbons; write them "in a row" and number them
- 2. Groups not in the chain will be listed at the beginning of the name $(methyl = CH_3, etc.)$
- 3. Fill in hydrogen atoms at the end if necessary

"Longest chain, smallest number"

CYCLOALKANES (C_nH_{2n})

+cyclo -yl +ane

Ex: cyclohexane = C_6H_{12} Generic Cycloalkane Formula: C_nH_{2n} (cyclohexyl group + H)

Also cyclobutane, etc.

Alkyl Halides

Generic Alkyl Halide Representation: R-X

X = halogen (F, Cl, Br or I)

Ex: methyl iodide = CH₃-I (methyl + iodide) also known as iodomethane

Ex: 2-iodopropane = CH₃-CHI-CH₃ (2-propyl + iodide) also known as 2-propyl iodide

Many other possibilities

MAR

ALCOHOLS

Generic Alcohol Representation: R-OH

-vl +anol

Generic Alcohol Formula: C_nH_{2n+2}O

Ex: ethanol = CH₃CH₂OH

(ethyl group + OH) CH₃CH₂-OH

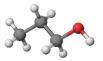
ALCOHOLS

Generic Alcohol Representation: R-OH

-vl +anol

Generic Alcohol Formula: C_nH_{2n+2}O

Ex: 1-propanol = CH₃CH₂CH₂OH (propyl group + OH) CH₃CH₂CH₂-OH new: propan-1-ol



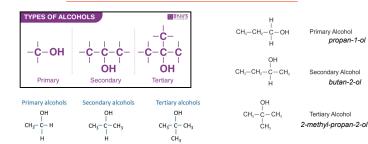
MAR

ALCOHOLS

Generic Alcohol Representation: R-OH

Note that both 1-propanol and 2-propanol exist

1-propanol CH₃-CH₂-CH₂OH propan-1-ol

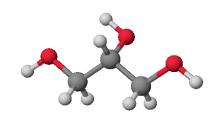

MAR

MAR

2-propanol CH₃-CH(OH)-CH₃ propan-2-ol

TYPES OF ALCOHOLS

2-methyl-propan-2-ol



Glycerol (propane-1,2,3-triol)
Alcohol with 3 OH Groups

ethanoi

MAR

MAR

HO CH₃

H.0 H.0

octane-2,3-4-triol

ETHERS - "old school"

Generic Ether Representation: R-O-R

Generic Ether Formula: C_nH_{2n+2}O

Ex: diethyl ether = CH₃CH₂-O-CH₂CH₃

(ethyl + O + ethyl)

Many other possibilities

CH₃—O—CH₂CH₃

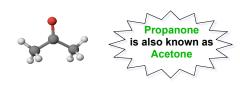
ethyl methyl ether

ETHERS - "IUPAC"

Two nomenclatures for ethers!

Ethers also use "IUPAC" Nomenclature (shorter alkyl group -yl +oxy) (longer group -yl +ane)

Ex: 1-ethoxypropane = CH₃CH₂-O-CH₂CH₂CH₃ (ethyl -yl + oxy)(propyl -yl +ane) old school: ethyl 1-propyl ether


Ex: 2-methoxypropane = CH₃CH(OCH₃)-CH₃
2-(methyl -yl + oxy)(propyl -yl +ane)
old school: methyl 2-propyl ether

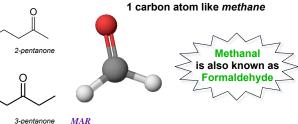
CH₃—O—CH₂CH₃ methoxy ethane

Generic Ketone Representation: R-CO-R

R = alkyl group, CO = carbonyl (C=O)Generic Ketone Formula: C_nH_{2n}O Two carbons connected to carbonyl

Ex: propanone = CH₃-C(=O)-CH₃ (methyl + C=O + methyl) 3 carbon atoms like propane

KETONES


butanone

MAR

MAR

Generic Aldehyde Representation: R-CO-H R = alkyl group or H, CO = carbonyl (C=O)Generic Aldehyde Formula: C_nH_{2n}O At least one H connected to carbonyl

Ex: methanal = H_2 -C=O 0

ALDEHYDES

Generic Alkyne Representation: R-C=C-R

R = alkyl group or H Generic Alkyne Formula: C_nH_{2n-2} Ex: 2-pentyne = H₃C-C=C-CH₂CH₃

5 carbon atoms like pentane

MAR

ALKYNES

propyne CH₃

Generic Alkene Representation: R-HC=CH-R

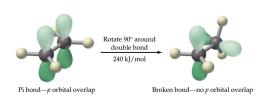
R = alkyl group or H Generic Alkene Formula: C_nH_{2n} Ex: trans-pent-2-ene = H₃C-HC=CH-CH₂CH₃

5 carbon atoms like pentane

ALKENES

but-1-ene

2-methyl propene


ALKENES - cis and trans

Important! Differing reactivity in cis and trans isomers

ALKENES - cis and trans

Cis - trans isomerism occurs because the electronic structure of the carbon-carbon double bond makes rotation energetically unfavorable.

ALKENE ISOMERS - cis and trans fats

Oleic acid is a monosaturated fat with a cis double bond found naturally in olive oil, nuts, avocados, etc. Healthier!

Elaidic acid is a **trans fat** with a **trans** double bond which is difficult to digest and causes multiple health issues. *Dangerous!*

Elaidic Acid

Both structures: C₁₈H₃₄O₂

AROMATIC HYDROCARBONS

Aromatic compounds use conjugated double bonds for increased stability.

Flat, stable organic functional group

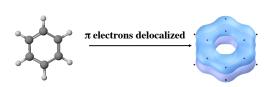
Simplest aromatic compound is Benzene, C_6H_6

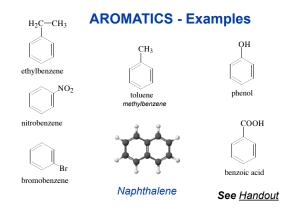
AROMATIC HYDROCARBONS

Notice: aromatic compounds are flat rings with delocalized π electrons

MAR

MAR


 $\pi \text{ bonds}$


AROMATIC HYDROCARBONS

More on The Ring

Resonance in Benzene

- C–C single bond: 154 pm C=C bond: 134 pm
- CC bonds in benzene: 139 pm
- CC bond order is

MAR

MAR

AROMATICS - Examples

ortho position meta position para position 1,2-dichlorobenzene 1,3-dichlorobenzene 1,4-dichlorobenzene or m-dichlorobenzene or p-dichlorobenzene or o-dichlorobenzene

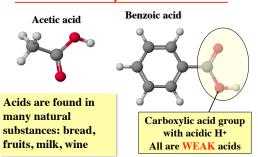
See Handout

CARBOXYLIC ACIDS

Generic Carboxylic Acid Representation:

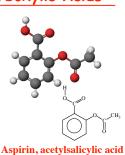
R-COOH Generic Carboxylic Acid Formula: $C_nH_{2n}O_2$ Ex: propanoic acid = CH₃CH₂-CO-OH (propyl -2H + =O + OH)

Many other possibilities!



CH₃(CH₂)₃CH₂ hexanoic acid

2-methyl-butanoic acid


Carboxylic Acids

Vinegar is essentially acetic acid!

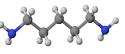
Carboxylic Acids

AMINES

Generic Amine Representation: R_(3-x)-NH_x

Ex: ethylamine = CH₃CH₂-NH₂ (ethyl + NH₂)

Also diethylamine and triethylamine



Methylamine

Dimethylamine

Trimethylamine

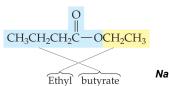
Amines generally have terrible odors!

Cadaverine

Pyridine

MAR

MAR


MAR

ESTERS

Generic Ester Representation: R₁-COO-R₂
Generic Ester Formula: C_nH_{2n}O₂

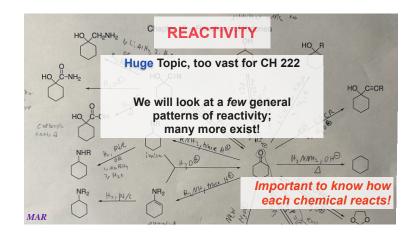
Ex: ethyl propanate = CH₃CH₂-COO-CH₂CH₃

(propyl -2H + =O + O + ethyl)
Similar to carboxylic acids

Name R2 first, then R1

AMIDES

Generic Amide Representation: R_x -CO-NH $_y$ R $_{(2-y)}$


Ex: N-methylpropanamide CH₃NH-CO-CH₂CH₃

N-groups off of nitrogen atom

Nomenclature and Models

MAR

MAR

Reactions of Alkenes: ADDITION REACTIONS

Alkenes are ${\color{red} {\bf unsaturated}}$ — more bonds can form to the C atoms

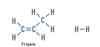
 $\label{eq:molecules} \begin{array}{l} \text{Molecules such as Br}_2,\,H_2,\,\text{HCI},\,\text{HBr},\,\text{and}\,\,H_2\text{O} \\ \text{add} \text{ to the double bond} \end{array}$

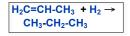
C₂H₄ + Br₂ → CH₂Br-CH₂Br

REACTIVITY

A few minutes

Example #1:
Addition Reactions
Diatomics adding

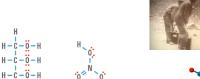

across double bond


MAR

Example #2: Addition Reactions Diatomics adding across double bond

REACTIVITY

REACTIVITY Example #3: Substitution Reactions Functional groups switch places



Fats can be "hydrogenated" with H₂. Many foods have hydrogenated fats

OM ROASTED PEAKUTS AND SUGAR CONTAINS ASSES, PARTIALLY HYDROGENATED VEGETABLE O Enated Vegetable Oils (Rapeseed and

MAR

6lycerol

MAR

REACTIVITY

Example #4: Elimination Reactions sp or sp² bond formation

CH₃CH₂-CH₂OH + H⁺ → CH₃-CH=CH₂ + H₂O + H⁺

Polymers

+NO₃

Giant molecules made by joining many small molecules called monomers

Average production is 150 kg per person annually in the U.S. (!)

MAR

MAR

Polymers

A Polymer literally means "many parts"

Many mer (or monomer) units combined to make a polymer

Polymers have high molar masses (10⁷ g mol-1 or more!) and are used for plastic, fabric, Teflon, much more

Synthesized by addition and condensation reactions $/ \mu \mu$

REACTIVITY

Example #5: Addition Polymerization Reactions

Polymers built from sp² carbons (pi bonds)

A polymer with a molar mass of 1e⁶ has about 360,000 units.

MAR

MAR

polyethylene

Polyethylene Synthesis

Chain initiator: benzoyl peroxide

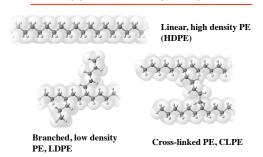
MAR

MAR

MAR

Initiation Step: Reaction of benzoyl radical

MAR


Polyethylene Synthesis

Chain Propagation: Addition of further ethylene

Chain Termination: Reaction of two radicals

$$\underbrace{ \left(\stackrel{H_2}{C} \stackrel{C}{C} \stackrel{C$$

Types of Polyethylene

MAR

Polystyrene

Polystyrene (PS) is a nonpolar material and dissolves in organic solvents.

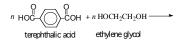
PS foam is mostly air, and when it dissolves it collapses to a *much* smaller volume.

REACTIVITY

Example #6: Condensation Polymerization Reactions

Condensation reactions combine different functional groups to make polymers with different properties

Very powerful reaction mechanism; used in contact lenses, nylon, much more


REACTIVITY

Example #6: Condensation Polymerization Reactions

Polyester

MAR

Polyethylene terephthalate (PET), a polyester Formation of polyester

MAR

MAR

Condensation Polymerization Reactions

Formation of Kevlar

n H₂N + n Cl -2 n HCl +

Polyesters (PET)

Soda bottles, mylar film.

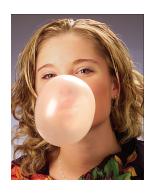
REACTIVITY

Example #6: Condensation Polymerization Reactions

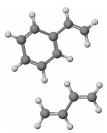
Nylon-6,6

Polyamides: Nylon

Each monomer has 6 C atoms in its chain.

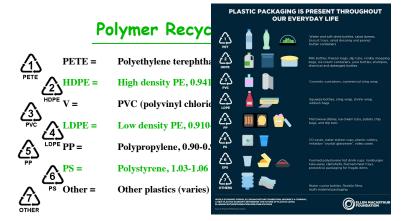

A polyamide link forms on elimination of HCl

Result = nylon-6,6


USES FOR POLYMERS

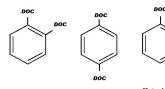
Examples of Polymers:

- Teflon polytetrafluoroethylene
- Fabric polyester, polyacrylonitrile
- Milk & soda bottles (High Density) Polyethylene
- · Styrofoam polystyrene
- plastic wrap (Saran) poly(vinylidene chloride)
- contact lenses poly(methyl methacrylate)
- · Other uses:


Bubble Gum!
A copolymer

Styrene + butadiene

MAR



End of Chapter 20

See:

- · Chapter Twenty Study Guide
- Chapter Twenty Concept Guide
- · Important Equations (following this slide)
- End of Chapter Problems (following this slide)

MAR Orthodox

Alkyne

Important Equations, Constants, and Handouts from this Chapter:

- be able to name organic compounds using the functional group along with the "longest chain, shortest number" concept
- recognize some common organic chemistry reactions
- see the Organic Chemistry Nomenclature Guide (handout)

Organic Chemistry: alkyl group, alkane, cycloalkane, alkyl halide, alcohol, ether, ketones, aldehydes, alkynes, alkenes, aromatic compounds, carboxylic acids, amines, isomers

MAR

End of Chapter Problems: Test Yourself

Be sure to view practice problem set #3 and self quizzes for organic chemistry nomenclature examples and practice

- Name a straight chain alkane with six carbon atoms.
 Name this compound: CH₃CH₂CH₂OH Provide two isomers of this compound and name them.
- Draw structural formulas for all four compounds with the formula C4H10Br. Give the systematic name of each.
- 4. Provide IUPAC numbered names for the following three compounds: m-dibromobenzene, o-dibromobenzene, pdibromobenzene
- 5. Which of the following would exhibit *cis*, *trans* isomerization? 1pentene, propene, 2-butene

End of Chapter Problems: Answers

- n-hexane
- 1-propanol. 2-propanol and 1-methoxy propane would be
- 3. 1-bromobutane, 2-bromobutane, 2-bromo-2-methylpropane, 1-
- bromo-2-methylpropane

 m-dibromobenzene = 1,3-dibromobenzene, o-dibromobenzene = 1,2-dibromobenzene, p-dibromobenzene = 1,4-dibromobenzene
- only 2-butene would exhibit cis, trans isomerization.

Be sure to view practice problem set #3 and self quizzes for organic chemistry nomenclature examples and practice

MAR MAR