| CH 222
Sample Quiz #5 Name: | | Lab Section: | | |--|--|---|--| | Be sure to show all work, use the correct number of significant figures, circle final answers and use correct units in all problems. | | | | | 1. | | of a nonvolatile solute is dissolved in $0.101~\rm kg$ of benzene (C_6H_6). The nm Hg. Find the mole fraction of the solute and the vapor pressure of the | | | 2. | | at 298 K: 1 L of a 0.250 M cesium sulfate solution or 1 L of a 0.220 M late the osmotic pressure for both solutions and assume 100% dissociation | | | 3. | Fill in the blanks. (6 points) | | | | | For the following: Cs ₃ PO ₄ (aq) Volatile Solute? (yes/no) Solute miscible in benzene? (yes/no) | Solute: Solvent: approximate van't Hoff <i>i</i> factor: Solvent miscible in benzene? (yes/no) | | | 4. | Dissolving 5.52 g of a non-volatile compound Calculate the molar mass of the unknown compou | in 36.0 g of benzene results in an observed freezing point of -1.87 °C. nd. ($k_{\rm fp} = 5.12$, normal freezing point of benzene = 5.50 °C.) (5 points) | | | Answ | ole Quiz #5 Name: | er of significant figures, circle fi | Lab Section:
nal answers and use correct units in all problems. | |------|---|---|--| | 1. | A quantity (161 mmol, where 1 mmol vapor pressure of pure benzene at 27 ° solution at 27 °C. (5 points) χ(solute) = 0.111 VP = 103 mm Hg | = 10 ⁻³ mol) of a nonvolatile solu
CC is 115.8 mm Hg. Find the mo | Inte is dissolved in 0.101 kg of benzene (C_6H_6). The sole fraction of the solute and the vapor pressure of the | | 2. | Which will generate the higher osmotic pressure at 298 K: 1 L of a 0.250 M cesium sulfate solution or 1 L of a 0.220 M phosphoric acid? Explain your reasoning, calculate the osmotic pressure for both solutions and assume 100% dissociation into ions. (4 points) for Cs_2SO_4 : $\pi = 18.3$ atm for H_2PO_4 : $\pi = 21.5$ atm H_3PO_4 is higher! | | | | 3. | Fill in the blanks. (6 points) For the following: Cs ₃ PO ₄ (aq) Volatile Solute? (yes/no) <u>no</u> | Solute: <u>Cs₃PO₄</u> approximate van't Hoff <i>i</i> | Solvent: <u>water</u>
factor: <u>4</u> | 4. Dissolving 5.52 g of a non-volatile compound in 36.0 g of benzene results in an observed freezing point of -1.87 $^{\circ}$ C. Calculate the molar mass of the unknown compound. ($k_{fp} = 5.12$, normal freezing point of benzene = 5.50 $^{\circ}$ C.) (5 points) Solute miscible in benzene? (yes/no) <u>no</u> Solvent miscible in benzene? (yes/no) <u>no</u> 107 g/mol