Chemistry 222 Sample Final Exam Cover Sheet Winter XXXX | Name: | | |---|---| | This exam consists of thirty-two (32) multiple-choice | e questions and five (5) short answer questions. | | A periodic table and scratch paper are available for y | you to use on this exam. | | Before you start: | | | Write your first and last name in the space Sign the integrity statement below. Fail an immediate grade of zero. | ter your letter answer in the appropriate location. Circle the your final answer, showing all work. | | Integrity statement: | | | I have neither given nor received aid on this exam. | | | | | | | Your signature | | 1. | Atomic number describes the number of in an atom. | |-----|--| | | a. protons b. neutrons c. electrons d. a and b e. all of the above | | Let | er answer to question #1: | | , | Which of the following symbols represents an alpha particle? | - Which of the following symbols represents an alpha particle? - ⁴₂He - b. ²₄He - 0 +1 - d. $_{-1}^{0}e$ - $_{0}^{1}$ n Letter answer to question #2: - The most penetrating type of radiation is a(n) - alpha particle - b. beta particle - gamma ray - d. positron - e. cathode ray Letter answer to question #3: - If plutonium-244 decays by successive α , β , β , α emissions, what nucleus is produced? - $^{236}_{88} Ra$ - ²³⁶₈₉Ac b. - ²³⁶₉₀Th c. - $^{240}_{90}{ m Th}$ d. - $^{236}_{\ 92} U$ e. Letter answer to question #4: 5. If Ag-106 decays by electron capture, what is the product? $$a.$$ $^{105}_{46}Pd$ Letter answer to question #5: By what (single step) process does polonium-211 decay to lead-207? - α particle emission - β particle emission - c. positron emission - electron capture - neutron capture Letter answer to question #6: The decay of radioactive elements is a first-order process. The half-life of carbon-14 is 5730 years. How many years will it take for 5.0 g of carbon-14 to decay to 1.0 mg? - a. 5730 years - b. 17,200 years - c. 24,900 years - d. 57,300 years - 70,400 years Letter answer to question #7: Given the initial rate data for the reaction $A + B \rightarrow C$, determine the rate expression for the reaction. | <u>[A], M</u> | <u>[B], M</u> | Δ [C]/ Δt (initial) M/s | |---------------|---------------|--| | 0.334 | 0.134 | 4.11×10^{-9} | | 0.334 | 0.187 | 8.00×10^{-9} | | 0.668 | 0.134 | 4.11×10^{-9} | $$\frac{\Delta[C]}{\Delta t} = 2.75 \times 10^{-7} \text{ M}^{-2} \text{s}^{-1} [\text{A}]^{2} [\text{B}]$$ $$\frac{\Delta[C]}{\Delta t} = 3.07 \times 10^{-8} \text{ s}^{-1}[B]$$ $$\frac{\Delta[C]}{\Delta t} = 2.29 \times 10^{-7} \text{ M}^{-1} \text{s}^{-1} [\text{B}]^2$$ c. $$\frac{\Delta t}{\Delta t}$$ = 6.85 × 10⁻⁷ M⁻²s⁻¹[A][B]² $$\frac{\Delta t}{\Delta t} = 6.85 \times 10^{7} \text{ M}^{2} \text{s}^{2} [\text{A}]$$ $$\frac{\Delta[C]}{\Delta t} = 1.23 \times 10^{-8} \text{ s}^{-1}[A]$$ Letter answer to question #8: | 9. | For a zero order reaction, which of the following (if plotted versus time) should give a straight line? | |-----|--| | | a. ln [A] b. ln k c. ln [1/A] d. 1/[A] | | | e. [A] | | Let | ter answer to question #9: | | 10. | In basic solution, (CH ₃) ₃ CCl reacts according to the equation: (CH ₃) ₃ CCl + OH- → (CH ₃) ₃ COH + Cl- The accepted mechanism for the reaction is (CH ₃) ₃ CCl → (CH ₃) ₃ C ⁺ + Cl- (slow) (CH ₃) ₃ C ⁺ + OH- → (CH ₃) ₃ COH (fast) What is a rate law that is consistent with the mechanism for this reaction? | | | a. rate = k[(CH ₃) ₃ CCl] b. rate = k[(CH ₃) ₃ CCl][OH-] c. rate = k[(CH ₃) ₃ CCl][OH-]/[Cl-] d. rate = k[(CH ₃) ₃ CCl][OH-]/[Cl-] e. rate = k[(CH ₃) ₃ CCl][OH-]/[Cl-] | | Let | ter answer to question #10: | | 11. | The elementary steps for the catalyzed decomposition of dinitrogen monoxide are shown below. $ 2\ N_2O(g)\ +\ 2\ NO(g)\ \to\ 2\ N_2(g)\ +\ 2\ NO_2(g) $ $ 2\ NO_2(g)\ \to\ 2\ NO(g)\ +\ O_2(g) $ Which of the following statement(s) is/are CORRECT? $ 1. \text{The overall balanced reaction is } 2\ N_2O(g)\ \to\ 2\ N_2(g)\ +\ O_2(g). $ $ 2. NO(g) \text{ is a catalyst for the reaction.} $ $ 3. N_2(g) \text{ is a reaction intermediate.} $ | | | a. 1 only b. 2 only c. 3 only d. 1 and 2 e. 1, 2, and 3 | | Let | ter answer to question #11: | | 12. | What is the half-life for a first-order reaction with a rate constant of 0.291 s ⁻¹ ? | | | a. 0.420 s b. 1.93 s c. 2.38 s d. 6.87 s e. 13.1 s | | Let | ter answer to question #12: | | 13. | The effect of adding a catalyst to a reaction is to | | | a. increase the number of collisions between reactants b. increase the energy of the products c. increase the equilibrium constant of a reaction d. lower the activation energy of a reaction e. decrease the enthalpy change of a reaction | | Let | ter answer to question #13: | | 14. If 0.3000 g of impure soda ash (Na ₂ CO ₃) is titrated with 17.66 mL of 0.1187 M HCl, what is the percent purity of the soda ash? Na ₂ CO ₃ (aq) + 2 HCl(aq) \rightarrow 2 NaCl(aq) + H ₂ O(l) + CO ₂ (g) | |--| | a. 11.11% b. 22.22% c. 57.91% d. 37.03% e. 74.06% | | Letter answer to question #14: | | 15. Which of the following combinations is most likely to produce an ionic bond? | | a. Cl and Br b. P and S c. N and O d. B and O e. Li and F | | Letter answer to question #15: | | 16. Which of the following aqueous solutions would have the highest vapor pressure at 25 °C? | | a. pure water b. 1 m glucose (C₆H₁₂O₆) c. 1 m NaNO₃ d. 1 m MgCl₂ e. 1 M (NH₄)₂SO₄ | | Letter answer to question #16: | | 17. When 27.0 g of an unknown metal at 88.4 °C is placed in 115 g H ₂ O at 21.0 °C, the final temperature of the water is 23.7 °C. What is the specific heat capacity of the metal? | | a. 0.34 J/g·K b. 0.51 J/g·K c. 0.74 J/g·K d. 0.94J/g·K e. 1.4 J/g·K | | Letter answer to question #17: | | 18. Calculate the amount of heat required to change 50.0 g ice at -20.0 °C to steam at 135 °C. (Heat of fusion = 333 J/g; heat of vaporization = 2260 J/g; specific heat capacities: ice = 2.09 J/g·K, steam = 1.84 J/g·K) a. 4.18 kJ b. 32.4 kJ | | c. 78.8 kJ
d. 135 kJ
e. 156 kJ | | Letter answer to question #18: | | 19. Hydrazine, N_2H_4 , is a liquid used as a rocket fuel. It reacts with oxygen to yield nitrogen gas and water: $N_2H_4(l) + O_2(g) \rightarrow N_2(g) + 2 H_2O(l)$ The reaction of 3.80 g N_2H_4 evolves 73.7 kJ of heat. Calculate the enthalpy change per mole of hydrazine combusted. | |--| | a8.74 kJ/mol
b19.4 kJ/mol
c2.80 × 10 ² kJ/mol
d622 kJ/mol
e8.98 × 10 ³ kJ/mol | | Letter answer to question #19: | | $20. \ \ Which of the following chemical equations corresponds to the standard molar enthalpy of formation of N_2O?$ | | a. $NO(g) + 1/2 N_2(g) \rightarrow N_2O(g)$
b. $N_2(g) + 1/2 O_2(g) \rightarrow N_2O(g)$
c. $2N(g) + O(g) \rightarrow N_2O(g)$
d. $N_2(g) + O(g) \rightarrow N_2O(g)$
e. $2 N_2(g) + O_2(g) \rightarrow 2 N_2O(g)$ | | Letter answer to question #20: | | 21. Determine ΔH for the reaction: $\mathbf{N_2(g)} + 3 \ \mathbf{H_2(g)} \rightarrow 2 \ \mathbf{NH_3(g)}$ given the thermochemical equations below. $N_2(g) + O_2(g) \rightarrow 2 \ \mathbf{NO(g)}$ $\Delta H = +180.8 \ \mathbf{kJ}$ $\Delta H = -906.2 \ \mathbf{kJ}$ $\Delta H = -906.2 \ \mathbf{kJ}$ $\Delta H = -483.6 \ \mathbf{kJ}$ a. $-1209.0 \ \mathbf{kJ}$ b. $-1189.0 \ \mathbf{kJ}$ c. $-756.5 \ \mathbf{kJ}$ d. $-241.8 \ \mathbf{kJ}$ e. $-91.5 \ \mathbf{kJ}$ | | Letter answer to question #21: | | 22. My reaction 'feels hot', and scientists refer to this reaction as: | | a. endothermic b. exothermic c. enthalpy disfavored d. enthalpy wannabe e. lame (this is not the correct answer! :) | | Letter answer to question #22: | | 23. The empirical formula of a certain hydrocarbon is CH₂. When 0.120 mole of the hydrocarbon is completely combusted with excess oxygen, 17.7 L CO₂ gas is produced at 27 °C and 1.00 atm. What is the molecular formula of the hydrocarbon? a. C₂H₂ b. C₂H₄ c. C₃H₆ d. C₅H₁₀ e. C₆H₁₂ | | Letter answer to question #23: | | | unknown gaseous hydrocarbon contains 85.63% C. Its density is 0.426 g/L at 0.465 atm and 373 K . What is the molecular mula of the gas? | |----------|---| | c.
d. | $C_{2}H_{4}$ $C_{3}H_{6}$ $C_{4}H_{8}$ $C_{5}H_{10}$ $C_{6}H_{12}$ | | Letter a | nswer to question #24: | | 25. WI | nat intermolecular force or bond is primarily responsible for the solubility of H ₂ S in water? | | | ion-dipole force dipole-dipole force ionic bonding covalent bonding hydrogen bonding | | Letter a | nswer to question #25: | | | nat is the solute mole fraction of 1.98 m Fe(NO_3) ₃ (aq)? The molar mass of Fe(NO_3) ₃ is 241.9 g/mol and the molar mass of ter is 18.02 g/mol. | | c.
d. | 0.0345
0.0641
0.324
0.479
0.863 | | Letter a | nswer to question #26: | | 27. Co | ncentrated hydrofluoric acid is 28.9 M and has a density of 1.18 g/mL. What is the weight percent of concentrated HF? | | b.
c. | 24.5%
49.0%
51.0%
68.2%
75.5% | | Letter a | nswer to question #27: | | | e Henry's law constant for N_2 in water at 37 °C is 8.2×10^{-7} M/mm Hg. What is the equilibrium concentration of N_2 in water the partial pressure of N_2 is 634 mm Hg? | | b.
c. | $1.3 \times 10^{-9} \text{ M}$
$5.2 \times 10^{-4} \text{ M}$
$1.9 \times 10^{-2} \text{ M}$
$1.9 \times 10^3 \text{ M}$
$7.7 \times 10^8 \text{ M}$ | | Letter a | nswer to question #28: | | 29. | Which of the following species will have a Lewis structure most like that of a sulfate ion, SO ₄ ² -? Assume that the Lewis structure has no double bonds. a. NH ₃ b. CBr ₄ c. SO ₃ d. H ₂ CO e. H ₂ O | |-----|--| | Let | ter answer to question #29: | | 30. | Which intermolecular force is the strongest? | | | a. induced dipole - induced dipole (ID-ID) b. ion-dipole c. hydrogen bonding d. dipole-dipole e. ion-ion | | Let | ter answer to question #30: | | 31. | For NH ₄ NO ₃ (aq), the solvent is | | | a. NH_4NO_3
b. NH_4^+
c. NO_3^{1-}
d. water
e. Duff beer | | Let | ter answer to question #31: | | 32. | When making pasta, adding salt to water will the boiling point of the water. | | | a. increase b. decrease c. have no effect d. ionize e. more information is needed to answer this question | | Let | ter answer to question #32: | | | | | 1. | List the following constants and values, and include units. (10 points) | |----|---| | | gas constant (R) when used with the ideal gas equation to five sig figs = | | | gas constant (R) when used with the Arrhenius equation to five sig figs = | | | Avogadro's number (N) to four sig figs = | | | the molar mass of ammonia to four sig figs = | | | the molar mass of water to four sig figs = | 2. Convert the following using correct significant figures: (10 points) 370 mL to L 43 m to cm 150 °C to K 128 cm³ to mL 150 s to minutes ## **CH 222 Final Lecture Exam Point Distribution Sheet** Avoid a point penalty - do **not** write on this page! | Multiple choice questions: | | | | | |--|-------------------------|---|--------------|--| | number of multiple choice
questions correct | X 5 points per question | = | _ points | | | Short answer questions: | | |
_ points | | | Total points on this exam: | | |
_ points | | | Grade | Percentage | Points on This Exam | |-------|------------|---------------------| | A | 90% - 100% | 162 - 180 | | В | 80% - 89% | 144 - 161 | | С | 67% - 79% | 120 - 143 | | D | 57% - 64% | 102 - 119 | | F | 0% - 56% | 0 - 101 | Part I: Multiple Choice Questions ## 1. A 2. A 3. C 4. E 5. B 6. A 7. E 8. C 9. A 10. A 11. D 12. C 13. D 14. D 15. E 16. A 17. C 18. E 19. D 20. B 21. E 22. B 23. E 24. A 25. B 26. A 27. B 28. B 29. B 30. E 31. D 32. A Part II: Short Answer / Calculation. 1. List the following constants, and include units, to four significant figures. (10 points) 0.082057 L*atm/mol*K 8.3145 J/mol*K 6.022 x 1023 /mol 17.04 g/mol 18.02 g/mol 2. Convert the following using correct significant figures: (10 points) 0.37 L 4.3 x 10³ cm 420 K 128 mL 2.5 minutes