Chemistry 222 Sample Final Exam Cover Sheet

Winter XXXX

Name:	
This exam consists of thirty-two (32) multiple-choice	e questions and five (5) short answer questions.
A periodic table and scratch paper are available for y	you to use on this exam.
Before you start:	
 Write your first and last name in the space Sign the integrity statement below. Fail an immediate grade of zero. 	ter your letter answer in the appropriate location. Circle the your final answer, showing all work.
Integrity statement:	
I have neither given nor received aid on this exam.	
	Your signature

1.	Atomic number describes the number of in an atom.
	 a. protons b. neutrons c. electrons d. a and b e. all of the above
Let	er answer to question #1:
,	Which of the following symbols represents an alpha particle?

- Which of the following symbols represents an alpha particle?
 - ⁴₂He
 - b. ²₄He
 - 0 +1
 - d. $_{-1}^{0}e$
 - $_{0}^{1}$ n

Letter answer to question #2:

- The most penetrating type of radiation is a(n)
 - alpha particle
 - b. beta particle
 - gamma ray
 - d. positron
 - e. cathode ray

Letter answer to question #3:

- If plutonium-244 decays by successive α , β , β , α emissions, what nucleus is produced?
 - $^{236}_{88} Ra$
 - ²³⁶₈₉Ac b.
 - ²³⁶₉₀Th c.
 - $^{240}_{90}{
 m Th}$ d.
 - $^{236}_{\ 92} U$ e.

Letter answer to question #4:

5. If Ag-106 decays by electron capture, what is the product?

$$a.$$
 $^{105}_{46}Pd$

Letter answer to question #5:

By what (single step) process does polonium-211 decay to lead-207?

- α particle emission
- β particle emission
- c. positron emission
- electron capture
- neutron capture

Letter answer to question #6:

The decay of radioactive elements is a first-order process. The half-life of carbon-14 is 5730 years. How many years will it take for 5.0 g of carbon-14 to decay to 1.0 mg?

- a. 5730 years
- b. 17,200 years
- c. 24,900 years
- d. 57,300 years
- 70,400 years

Letter answer to question #7:

Given the initial rate data for the reaction $A + B \rightarrow C$, determine the rate expression for the reaction.

<u>[A], M</u>	<u>[B], M</u>	Δ [C]/ Δt (initial) M/s
0.334	0.134	4.11×10^{-9}
0.334	0.187	8.00×10^{-9}
0.668	0.134	4.11×10^{-9}

$$\frac{\Delta[C]}{\Delta t} = 2.75 \times 10^{-7} \text{ M}^{-2} \text{s}^{-1} [\text{A}]^{2} [\text{B}]$$

$$\frac{\Delta[C]}{\Delta t} = 3.07 \times 10^{-8} \text{ s}^{-1}[B]$$

$$\frac{\Delta[C]}{\Delta t} = 2.29 \times 10^{-7} \text{ M}^{-1} \text{s}^{-1} [\text{B}]^2$$

c.
$$\frac{\Delta t}{\Delta t}$$
 = 6.85 × 10⁻⁷ M⁻²s⁻¹[A][B]²

$$\frac{\Delta t}{\Delta t} = 6.85 \times 10^{7} \text{ M}^{2} \text{s}^{2} [\text{A}]$$

$$\frac{\Delta[C]}{\Delta t} = 1.23 \times 10^{-8} \text{ s}^{-1}[A]$$

Letter answer to question #8:

9.	For a zero order reaction, which of the following (if plotted versus time) should give a straight line?
	a. ln [A] b. ln k c. ln [1/A] d. 1/[A]
	e. [A]
Let	ter answer to question #9:
10.	In basic solution, (CH ₃) ₃ CCl reacts according to the equation: (CH ₃) ₃ CCl + OH- → (CH ₃) ₃ COH + Cl- The accepted mechanism for the reaction is (CH ₃) ₃ CCl → (CH ₃) ₃ C ⁺ + Cl- (slow) (CH ₃) ₃ C ⁺ + OH- → (CH ₃) ₃ COH (fast) What is a rate law that is consistent with the mechanism for this reaction?
	a. rate = k[(CH ₃) ₃ CCl] b. rate = k[(CH ₃) ₃ CCl][OH-] c. rate = k[(CH ₃) ₃ CCl][OH-]/[Cl-] d. rate = k[(CH ₃) ₃ CCl][OH-]/[Cl-] e. rate = k[(CH ₃) ₃ CCl][OH-]/[Cl-]
Let	ter answer to question #10:
11.	The elementary steps for the catalyzed decomposition of dinitrogen monoxide are shown below. $ 2\ N_2O(g)\ +\ 2\ NO(g)\ \to\ 2\ N_2(g)\ +\ 2\ NO_2(g) $ $ 2\ NO_2(g)\ \to\ 2\ NO(g)\ +\ O_2(g) $ Which of the following statement(s) is/are CORRECT? $ 1. \text{The overall balanced reaction is } 2\ N_2O(g)\ \to\ 2\ N_2(g)\ +\ O_2(g). $ $ 2. NO(g) \text{ is a catalyst for the reaction.} $ $ 3. N_2(g) \text{ is a reaction intermediate.} $
	 a. 1 only b. 2 only c. 3 only d. 1 and 2 e. 1, 2, and 3
Let	ter answer to question #11:
12.	What is the half-life for a first-order reaction with a rate constant of 0.291 s ⁻¹ ?
	a. 0.420 s b. 1.93 s c. 2.38 s d. 6.87 s e. 13.1 s
Let	ter answer to question #12:
13.	The effect of adding a catalyst to a reaction is to
	 a. increase the number of collisions between reactants b. increase the energy of the products c. increase the equilibrium constant of a reaction d. lower the activation energy of a reaction e. decrease the enthalpy change of a reaction
Let	ter answer to question #13:

14. If 0.3000 g of impure soda ash (Na ₂ CO ₃) is titrated with 17.66 mL of 0.1187 M HCl, what is the percent purity of the soda ash? Na ₂ CO ₃ (aq) + 2 HCl(aq) \rightarrow 2 NaCl(aq) + H ₂ O(l) + CO ₂ (g)
a. 11.11% b. 22.22% c. 57.91% d. 37.03% e. 74.06%
Letter answer to question #14:
15. Which of the following combinations is most likely to produce an ionic bond?
 a. Cl and Br b. P and S c. N and O d. B and O e. Li and F
Letter answer to question #15:
16. Which of the following aqueous solutions would have the highest vapor pressure at 25 °C?
 a. pure water b. 1 m glucose (C₆H₁₂O₆) c. 1 m NaNO₃ d. 1 m MgCl₂ e. 1 M (NH₄)₂SO₄
Letter answer to question #16:
17. When 27.0 g of an unknown metal at 88.4 °C is placed in 115 g H ₂ O at 21.0 °C, the final temperature of the water is 23.7 °C. What is the specific heat capacity of the metal?
 a. 0.34 J/g·K b. 0.51 J/g·K c. 0.74 J/g·K d. 0.94J/g·K e. 1.4 J/g·K
Letter answer to question #17:
 18. Calculate the amount of heat required to change 50.0 g ice at -20.0 °C to steam at 135 °C. (Heat of fusion = 333 J/g; heat of vaporization = 2260 J/g; specific heat capacities: ice = 2.09 J/g·K, steam = 1.84 J/g·K) a. 4.18 kJ b. 32.4 kJ
c. 78.8 kJ d. 135 kJ e. 156 kJ
Letter answer to question #18:

19. Hydrazine, N_2H_4 , is a liquid used as a rocket fuel. It reacts with oxygen to yield nitrogen gas and water: $N_2H_4(l) + O_2(g) \rightarrow N_2(g) + 2 H_2O(l)$ The reaction of 3.80 g N_2H_4 evolves 73.7 kJ of heat. Calculate the enthalpy change per mole of hydrazine combusted.
a8.74 kJ/mol b19.4 kJ/mol c2.80 × 10 ² kJ/mol d622 kJ/mol e8.98 × 10 ³ kJ/mol
Letter answer to question #19:
$20. \ \ Which of the following chemical equations corresponds to the standard molar enthalpy of formation of N_2O?$
a. $NO(g) + 1/2 N_2(g) \rightarrow N_2O(g)$ b. $N_2(g) + 1/2 O_2(g) \rightarrow N_2O(g)$ c. $2N(g) + O(g) \rightarrow N_2O(g)$ d. $N_2(g) + O(g) \rightarrow N_2O(g)$ e. $2 N_2(g) + O_2(g) \rightarrow 2 N_2O(g)$
Letter answer to question #20:
21. Determine ΔH for the reaction: $\mathbf{N_2(g)} + 3 \ \mathbf{H_2(g)} \rightarrow 2 \ \mathbf{NH_3(g)}$ given the thermochemical equations below. $N_2(g) + O_2(g) \rightarrow 2 \ \mathbf{NO(g)}$ $\Delta H = +180.8 \ \mathbf{kJ}$ $\Delta H = -906.2 \ \mathbf{kJ}$ $\Delta H = -906.2 \ \mathbf{kJ}$ $\Delta H = -483.6 \ \mathbf{kJ}$ a. $-1209.0 \ \mathbf{kJ}$ b. $-1189.0 \ \mathbf{kJ}$ c. $-756.5 \ \mathbf{kJ}$ d. $-241.8 \ \mathbf{kJ}$ e. $-91.5 \ \mathbf{kJ}$
Letter answer to question #21:
22. My reaction 'feels hot', and scientists refer to this reaction as:
 a. endothermic b. exothermic c. enthalpy disfavored d. enthalpy wannabe e. lame (this is not the correct answer! :)
Letter answer to question #22:
 23. The empirical formula of a certain hydrocarbon is CH₂. When 0.120 mole of the hydrocarbon is completely combusted with excess oxygen, 17.7 L CO₂ gas is produced at 27 °C and 1.00 atm. What is the molecular formula of the hydrocarbon? a. C₂H₂ b. C₂H₄ c. C₃H₆ d. C₅H₁₀ e. C₆H₁₂
Letter answer to question #23:

	unknown gaseous hydrocarbon contains 85.63% C. Its density is 0.426 g/L at 0.465 atm and 373 K . What is the molecular mula of the gas?
c. d.	$C_{2}H_{4}$ $C_{3}H_{6}$ $C_{4}H_{8}$ $C_{5}H_{10}$ $C_{6}H_{12}$
Letter a	nswer to question #24:
25. WI	nat intermolecular force or bond is primarily responsible for the solubility of H ₂ S in water?
	ion-dipole force dipole-dipole force ionic bonding covalent bonding hydrogen bonding
Letter a	nswer to question #25:
	nat is the solute mole fraction of 1.98 m Fe(NO_3) ₃ (aq)? The molar mass of Fe(NO_3) ₃ is 241.9 g/mol and the molar mass of ter is 18.02 g/mol.
c. d.	0.0345 0.0641 0.324 0.479 0.863
Letter a	nswer to question #26:
27. Co	ncentrated hydrofluoric acid is 28.9 M and has a density of 1.18 g/mL. What is the weight percent of concentrated HF?
b. c.	24.5% 49.0% 51.0% 68.2% 75.5%
Letter a	nswer to question #27:
	e Henry's law constant for N_2 in water at 37 °C is 8.2×10^{-7} M/mm Hg. What is the equilibrium concentration of N_2 in water the partial pressure of N_2 is 634 mm Hg?
b. c.	$1.3 \times 10^{-9} \text{ M}$ $5.2 \times 10^{-4} \text{ M}$ $1.9 \times 10^{-2} \text{ M}$ $1.9 \times 10^3 \text{ M}$ $7.7 \times 10^8 \text{ M}$
Letter a	nswer to question #28:

29.	Which of the following species will have a Lewis structure most like that of a sulfate ion, SO ₄ ² -? Assume that the Lewis structure has no double bonds. a. NH ₃ b. CBr ₄ c. SO ₃ d. H ₂ CO e. H ₂ O
Let	ter answer to question #29:
30.	Which intermolecular force is the strongest?
	 a. induced dipole - induced dipole (ID-ID) b. ion-dipole c. hydrogen bonding d. dipole-dipole e. ion-ion
Let	ter answer to question #30:
31.	For NH ₄ NO ₃ (aq), the solvent is
	a. NH_4NO_3 b. NH_4^+ c. NO_3^{1-} d. water e. Duff beer
Let	ter answer to question #31:
32.	When making pasta, adding salt to water will the boiling point of the water.
	 a. increase b. decrease c. have no effect d. ionize e. more information is needed to answer this question
Let	ter answer to question #32:

1.	List the following constants and values, and include units. (10 points)
	gas constant (R) when used with the ideal gas equation to five sig figs =
	gas constant (R) when used with the Arrhenius equation to five sig figs =
	Avogadro's number (N) to four sig figs =
	the molar mass of ammonia to four sig figs =
	the molar mass of water to four sig figs =

2. Convert the following using correct significant figures: (10 points)

370 mL to L

43 m to cm

150 °C to K

128 cm³ to mL

150 s to minutes

CH 222 Final Lecture Exam Point Distribution Sheet

Avoid a point penalty - do **not** write on this page!

Multiple choice questions:				
number of multiple choice questions correct	X 5 points per question	=	_ points	
Short answer questions:			 _ points	
Total points on this exam:			 _ points	

Grade	Percentage	Points on This Exam
A	90% - 100%	162 - 180
В	80% - 89%	144 - 161
С	67% - 79%	120 - 143
D	57% - 64%	102 - 119
F	0% - 56%	0 - 101

Part I: Multiple Choice Questions

1. A 2. A 3. C 4. E 5. B 6. A 7. E 8. C 9. A 10. A 11. D 12. C 13. D 14. D 15. E 16. A 17. C 18. E 19. D 20. B 21. E 22. B 23. E 24. A 25. B 26. A 27. B 28. B 29. B 30. E 31. D 32. A Part II: Short Answer / Calculation. 1. List the following constants, and include units, to four significant figures. (10 points) 0.082057 L*atm/mol*K 8.3145 J/mol*K 6.022 x 1023 /mol 17.04 g/mol 18.02 g/mol 2. Convert the following using correct significant figures: (10 points) 0.37 L 4.3 x 10³ cm 420 K 128 mL 2.5 minutes