Chemistry 222 Sample Exam II Cover Sheet

Winter XXXX

Name:	_
This exam consists of twenty-five (25) multiple-choice questi points of extra credit.	ons and three (3) short answer questions with fiv
A periodic table and scratch paper are available for you to use	on this exam.
Before you start:	
 Write your first and last name in the space above Sign the integrity statement below. Failing to sig an immediate grade of zero. For multiple choice questions: clearly enter your le letter which corresponds to your answer. For short answer questions: clearly circle your final 	etter answer in the appropriate location. Circle th
Point values and your exam score will be summarized on the f	inal page
Integrity statement:	
I have neither given nor received aid on this exam.	
	Vous sign ature
	Your signature

СН	222 Sample Exam II Part I: Multiple Choice Questions (100 Points) There is <i>only</i> one best answer for each question.
1.	Of the following, is the most volatile.
	a. CBr ₄
	b. CCl ₄
	c. CF ₄
	d. CH ₄ e. C ₆ H ₁₄
Let	ter answer to question #1:
2.	Potassium metal crystallizes in a body-centered cubic structure with a unit cell edge length of 5.31 Å. The radius of a potassium atom is Å.
	a. 1.33
	b. 1.88
	c. 2.30
	d. 2.66
	e. 5.31
Let	ter answer to question #2:
3.	As a solid element melts, the atoms become and they have attraction for one another.
	a. more separated, more
	b. more separated, less
	c. closer together, more
	d. closer together, less
	e. larger, greater
Let	ter answer to question #3:
4.	Which one of the following exhibits dipole-dipole attraction between molecules?
	a. XeF ₄
	b. AsH ₃
	c. CO ₂
	d. BCl ₃
	e. Cl ₂
Let	ter answer to question #4:

5.	Based on the following information, which compound has the strongest intermolecular forces?
	$\begin{array}{lll} \underline{\text{Substance}} & \underline{\text{A}H_{\text{vap}} \text{ (kJ/mol)}} \\ \text{Argon (Ar)} & 6.3 \\ \text{Benzene (C}_{6}\text{H}_{6}\text{)} & 31.0 \\ \text{Ethanol (C}_{2}\text{H}_{5}\text{OH)} & 39.3 \\ \text{Water (H}_{2}\text{O)} & 40.8 \\ \text{Methane (CH}_{4}\text{)} & 9.2 \\ \end{array}$
	 a. Argon b. Benzene c. Ethanol d. Water e. Methane
Let	ter answer to question #5:
6.	The vapor pressure of any substance at its normal boiling point is
	 a. 1 bar b. 1 torr c. 1 atm d. equal to atmospheric pressure e. equal to the vapor pressure of water
Let	ter answer to question #6:
7.	The solubility of oxygen gas in water at 25 °C and 1.0 atm pressure of oxygen is 0.041 g/L. The solubility of oxygen in water at 3.0 atm and 25 °C is g/L. a. 0.041 b. 0.014 c. 0.31 d. 0.12 e. 3.0
Let	ter answer to question #7:
8.	A sample of potassium nitrate (49.0 g) is dissolved in 101 g of water at 100 °C with precautions taken to avoid evaporation of any water. The solution is cooled to 30.0 °C and a small amount of precipitate is observed. This solution is a. hydrated b. placated c. saturated d. unsaturated e. supersaturated
Let	ter answer to question #8:

9.	The concentration of urea in a solution prepared by dissolving 16 g of urea in 39 g of H ₂ O is mass of urea is 60.0 g/mol.	% by mass. The mola
	a. 29 b. 41 c. 0.29 d. 0.41	
	e. 0.48	
Lett	tter answer to question #9:	
10.	The concentration of KBr in a solution prepared by dissolving 2.21 g of KBr in 897 g of water i	s molal.
	a. 2.46 b. 0.0167 c. 0.0207	
	d. 2.07 x 10 ⁻⁵ e. 0.0186	
Lett	tter answer to question #10:	
11.	A solution is prepared by dissolving 15.0 g of NH_3 in 250.0 g of water. The density of the res molarity of NH_3 in the solution is	ulting solution is 0.974 g/mL. Th
	a. 0.00353	
	b. 0.882 c. 60.0	
	d. 3.24	
Lett	e. 3.53 tter answer to question #11:	
12.	The concentration of sodium chloride in an aqueous solution that is 2.23 M and that has a dense by mass.	sity of 1.01 g/mL is9
	a. 2.21	
	b. 7.83 c. 45.3	
	d. 12.9	
Lett	e. 10.1 tter answer to question #12:	
13.	The vapor pressure of pure water at 25 °C is 23.8 torr. What is the vapor pressure (torr) of w dissolving 18.0 g of glucose (a nonelectrolyte, $MW = 180.0 \text{ g/mol}$) in 95.0 g of water?	vater above a solution prepared by
	a. 24.3	
	b. 23.4 c. 0.451	
	d. 0.443	
	e. 23.8	
Lett	tter answer to question #13:	

	Determine the freezing point (°C) of a 0.015 molal aqueous solution of MgSO ₄ . The molal freezing-point-depression constant of vater is 1.86 °C/m. <i>Note:</i> Check your van't Hoff factor!
b c d	0.056 0.028 0.17 0.084 . 0.000
Letter	answer to question #14:
15. T	The equation which represents the number of atoms in a face-centered cubic unit cell is
b c d	. 8(1/8) + 4(1/2) . 4(1/4) + 4 . 6(1/4) + 6(1/2) . 8(1/8) + 4(1/4) + 2(1/2) . 8(1/8) + 6(1/2)
Letter	answer to question #15:
16. V	Which of the following aqueous solutions would have the highest vapor pressure at 25 °C?
b c d	 pure water 1 m glucose (C₆H₁₂O₆) 1 m NaNO₃ 1 m MgCl₂ 1 M (NH₄)₂SO₄
Letter	answer to question #16:
17. V	What intermolecular force or bond is primarily responsible for the solubility of H ₂ S in water?
b c	 ion-dipole force dipole-dipole force ionic bonding covalent bonding hydrogen bonding
Letter	answer to question #17:
a b c	. 0.0641 . 0.324 . 0.479
Letter	answer to question #18:

19.	Concentrated hydrofluoric acid is 28.9 M and has a density of 1.18 g/mL. What is the weight percent of concentrated HF?	
	. 24.5%	
	. 49.0%	
	. 51.0%	
	. 68.2% . 75.5%	
Let	answer to question #19:	
LCU	answer to question #15.	
20.	The Henry's law constant for N_2 in water at 37 °C is 8.2×10^{-7} M/mm Hg. What is the equilibrium concentration of N_2 in wayhen the partial pressure of N_2 is 634 mm Hg?	iter
	$1.3 \times 10^{-9} \mathrm{M}$	
	$5.2 \times 10^4 \mathrm{M}$	
	. $1.9 \times 10^{-2} \text{ M}$. $1.9 \times 10^{3} \text{ M}$	
	$1.9 \times 10^{8} \mathrm{M}$ $7.7 \times 10^{8} \mathrm{M}$	
Let	answer to question #20:	
21.	for NH ₄ NO ₃ (aq), the solvent is	
	. NH ₄ NO ₃	
	$\sim NH_4^+$	
	. NO ₃ 1- . water	
	. Duff beer	
Let	answer to question #21:	
22.	Which of the following exhibits hydrogen bonding in the liquid state?	
	. C ₂ H ₅ OH	
	. CH ₄	
	. CHCl ₃	
	. CHF ₃	
	. none of the above	
Let	answer to question #22:	
23.	Which of the following exhibits ion-ion bonding in the solid state?	
	P_2O_5	
	SO_2	
	. SiCl ₄	
	. NOF ₂	
	. UF ₆	
Let	answer to question #23:	
24.	of the following, has the highest boiling point.	
	. N_2	
	Br_2	
	. H_2	
	. Cl ₂	
	. O_2	
Let	answer to question #24:	

25.	Of the following, is an exothermic process.
	a. melting
	b. subliming
	c. freezing
	d. boiling
	e. All of the above are exothermic.
Let	ter answer to question #25:
<u> </u>	
<u> Par</u>	tII: Short Answer / Calculation. Show all work!
1.	The fluorocarbon C ₂ Cl ₃ F ₃ has a normal boiling point of 47.6 °C. The specific heats of C ₂ Cl ₃ F ₃ (1) and C ₂ Cl ₃ F ₃ (g) are 0.910 J/g-K and 0.670 J/g-K, respectively. The heat of vaporization of the compound is 27.49 kJ/mol. Calculate the heat, q, required to conver 50.0 g of the compound from the liquid at 5.0 °C to the gas at 80.0 °C in kilojoules (kJ). (10 points)
2.	What would be the value of q if the sample in problem #1, above, if the gas at 80.0 °C was cooled to a liquid at 5.0 °C? (5 points)

3.	What is the molar mass of a nonelectrolyte if 6.02 grams dissolved in 30.0 grams of benzene freezes at -1.55 °C? The freezing point of pure benzene is 5.50 °C and the freezing point depression constant, K_{fp} , is -5.12 °C/m. (10 points)
4.	Concentrated aqueous sulfuric acid has a density of $1.84~g/cm^3$ and is 95.0% by weight H_2SO_4 . What is the molarity of this acid? What is the molality? (10 points)

CH 222 Exam II Point Distribution Sheet

Avoid a point penalty - do not write on this page!

Multiple choice questions:				
number of multiple choice questions correct	X 4 points per question	=	 _ points	
Short answer questions:			_ points	
Total points on this exam:			 _ points	

Grade	Percentage	Points on This Exam
A	90% - 100%	117 - 130
В	80% - 89%	104 - 116
С	67% - 79%	87 - 103
D	57% - 64%	74 - 86
F	0% - 56%	0 - 73

Part I: Multiple Choice Questions

- 1. D
- 2. C
- 3. B
- 4. B
- 5. D
- 6. C
- 7. D
- 8. C
- 9. A
- 10. C
- 11. D
- 12. D 13. B
- 14. A
- 15. E
- 16. A
- 17. B
- 18. A
- 19. B
- 20. B
- 21. D
- 22. A
- 23. E
- 24. B
- 25. C

Part II: Short Answer / Calculation.

- 1. 10.36 kJ
- 2. -10.36 kJ 3. 146 g/mol
- 4. 190 m, 17.8 M