CH 222 Nuclear Chemistry Guide

X = element symbol n = element charge (if any) Z = atomic number (number of protons) A = mass number (number of protons + neutrons)

Types of Radiative Processes

<u>Alpha Decay</u> :	Lose	Example:		Note 1
	${}_{2}^{4}$ He		$^{234}_{92}$ U $\rightarrow ^{4}_{2}$ He + $^{230}_{90}$ Th	
Beta Decay:	Lose	Example:		Note 4
	$^{0}_{-1}e$		$^{235}_{92}U \rightarrow ^{0}_{-1}e + ^{235}_{93}Np$	
<u>Gamma Decay</u> :	Emit Energy	Example:		Note 2
			$^{99\mathrm{m}}_{43}\mathrm{Tc} \rightarrow \gamma + ^{99}_{43}\mathrm{Tc}$	
Positron Emission:	Lose	Example:		Note 3, 4
	$^{0}_{+1}e$		${}^{207}_{84}$ Po $\rightarrow {}^{0}_{+1}e + {}^{207}_{83}$ Bi	
Electron Capture:	Gain	Example:		Note 4
	$^{0}_{-1}e$		${}^{7}_{4}\text{Be} + {}^{0}_{-1}\text{e} \rightarrow {}^{7}_{3}\text{Li}$	
<u>Neutron Capture</u> :	Gain	Example:		
	${}_{0}^{1}$ n		${}_{3}^{6}\text{Li} + {}_{0}^{1}n \rightarrow {}_{2}^{4}\text{He} + {}_{1}^{3}\text{H}$	
Note 1:	The alpha particle is actually charged, having a charge of $+2$. This makes the other product have a negative -2 charge (conservation of charge), but the charges of the ions are received and in puellog charge the minimum.			
	are rarely considered in nuclear chemistry.			
Note 2:	Gamma emissions have energies in the range of roughly 1 MeV ($1.6*10^{-13}$ J).			
Note 3:	A positron is an antielectron (a particle of antimatter) - when a positron and an			
	electron collide, they	y annihilate ea	ach other $\begin{pmatrix} 0 \\ 0 \\ +1 \end{pmatrix} e^{-1} e^{-1} e^{-1} 2\gamma^{-1}$	
Note 4:	The beta decay process produces an <u>antineutrino</u> in addition to the other products, while the positron emission and electron capture processes result in the creation of a <u>neutrino</u> . This is due to the <u>conservation of spin</u> concept, but you need not concern yourself about neutrinos in <i>this</i> CH 222 class!			