CH 222 Practice Problem Set #5

This is a **practice problem set** and not the actual graded problem set that you will turn in for credit.

Answers to each problem can be found at the end of this assignment.

Covering: Chapter Eleven and Chapter Guide Five

Important Tables and/or Constants: "Solution Calculations" (Handout)

1. Fill in the blanks in the table. All solutions are aqueous.

Compound	Molality	Weight Percent	Mole Fraction
NaI	0.15		
C_2H_5OH		5	
$C_{12}H_{22}O_{11}$			0.0027

- 2. Hydrochloric acid is sold as a concentrated aqueous solution. If the molarity of commercial HCl is 12.0 and its density is 1.18 g/cm³, calculate the following:
 - a. the molality of the solution
 - b. the weight percent of HCl in the solution
- 3. The average lithium ion concentration in sea water is 0.18 ppm. What is the molality of Li⁺ in sea water?
- 4. An unopened soda can has an aqueous CO_2 concentration of 0.0506 M at 25 °C. What is the pressure of CO_2 gas in the can? ($k_H = 4.48 \times 10^{-5} \text{ M/mm Hg}$)
- 5. Pure iodine (105 g) is dissolved in 325 g of CCl₄ at 65 °C. Given that the vapor pressure of CCl₄ at this temperature is 531 mm Hg, what is the vapor pressure of the CCl₄–I₂ solution at 65 °C? (Assume that I₂ does not contribute to the vapor pressure.)
- 6. What is the boiling point of a solution composed of 15.0 g of CHCl₃ (which boils at 61.70 °C) and 0.515 g of the nonvolatile solute acenaphthene, $C_{12}H_{10}$, a component of coal tar? ($K_{bp} = 3.63$ °C/m)
- 7. Assume a bottle of wine consists of an 11 weight percent solution of ethanol (C_2H_5OH) in water. If the bottle of wine is chilled to -20 °C, will the solution begin to freeze? ($K_{fp} = 1.86$ °C/m)
- 8. Anthracene, a hydrocarbon obtained from coal, has an empirical formula of C_7H_5 . To find its molecular formula you dissolve 0.500 g in 30.0 g of benzene ($K_{bp} = 2.53 \, ^{\circ}\text{C/m}$). The boiling point of the pure benzene is 80.10 $^{\circ}\text{C}$, whereas the solution has a boiling point of 80.34 $^{\circ}\text{C}$. What is the molecular formula of anthracene?
- 9. Phenylcarbinol is used in nasal sprays as a preservative. A solution of 0.52 g of the compound in 25.0 g of water ($K_{\rm fp}$ = -1.86 °C/m) has a melting point of -0.36 °C. What is the molar mass of phenylcarbinol?
- 10. An aqueous solution containing 1.00 g of bovine insulin (a protein, not ionized) per liter has an osmotic pressure of 3.1 mm Hg at 25 °C. Calculate the molar mass of bovine insulin.

Answers to the Practice Problem Set:

1. Answers:

Compound	Molality	Weight percent	Mole fraction
NaI	0.15	2.2	0.0027
C ₂ H ₅ OH	1.1	5.0	0.020
$C_{12}H_{22}O_{11}$	0.15	4.9	0.0027

- 2. a. 16.2 *m* b. 37.1%
- 3. 2.6 x 10⁻⁵ m
- 4. 1130 mm Hg
- 5. 444 mm Hg
- 6. 62.51 °C
- 7. Solution will freeze beginning at -5.0 °C
- 8. $C_{14}H_{10}$
- 9. 110 g/mol
- 10. 6.0 x 10³ g/mol