CH 222 Practice Problem Set \#6

This is a practice problem set and not the actual graded problem set that you will turn in for credit.
Answers to each problem can be found at the end of this assignment.

Covering: Chapter Twelve, Chapter Twenty-one and Chapter Guide Six

Important Tables and/or Constants: $\mathbf{R}=\mathbf{8 . 3 1 4 5} \mathbf{~ J ~ m o l}^{-\mathbf{1}} \mathbf{K}^{-1}$, "Reaction Mechanisms Guide" (Handout)

1. Give the relative rates of disappearance of reactants and formation of products for each of the following reactions.
a. $2 \mathrm{O}_{3}(\mathrm{~g}) \rightarrow 3 \mathrm{O}_{2}(\mathrm{~g})$
b. $2 \mathrm{HOF}(\mathrm{g}) \rightarrow 2 \mathrm{HF}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
2. In the reaction $2 \mathrm{O}_{3}(\mathrm{~g}) \rightarrow 3 \mathrm{O}_{2}(\mathrm{~g})$, the rate of formation of O_{2} is $1.5 \times 10^{-3} \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}$. What is the rate of decomposition of O_{3} ?
3. The reaction between ozone and nitrogen dioxide at 231 K is first order in both NO_{2} and O_{3} :

$$
2 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})
$$

a. Write the rate equation for the reaction.
b. If the concentration of NO_{2} is tripled, what is the change in the reaction rate?
c. What is the effect on reaction rate if the concentration of O_{3} is halved?
4. The data in the table are for the reaction of NO and O_{2} at 660 K .
$\mathbf{2} \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathbf{2} \mathrm{NO}_{2}(\mathrm{~g})$
Reactant Concentration (M)

$\mathbf{N O}]$	$\left[\mathbf{O}_{\mathbf{2}}\right]$	Rate of Disappearance of $\mathbf{N O}\left(\mathbf{M ~ s}^{\mathbf{- 1}}\right)$
0.01	0.01	2.5×10^{-5}
0.02	0.01	1.0×10^{-4}
0.01	0.02	5.0×10^{-5}

a. Determine the order of the reaction for each reactant.
b. Write the rate equation for the reaction.
c. Calculate the rate constant.
d. Calculate the rate (in mol/L $\cdot \mathrm{s}$) at the instant when $[\mathrm{NO}]=0.015 \mathrm{M}$ and $\left[\mathrm{O}_{2}\right]=0.0050 \mathrm{M}$ e. At the instant when NO is reacting at the rate $1.0 \times 10^{-4} \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}$, what is the rate at which O_{2} is reacting and NO_{2} is forming?
5. The rate equation for the hydrolysis of sucrose to fructose and glucose:

$$
\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{aq})
$$

is " $-\Delta$ [sucrose $] / \Delta t=\mathrm{k}\left[\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right]$." After 2.57 h at $27^{\circ} \mathrm{C}$, the sucrose concentration decreased from 0.0146 M to 0.0132 M . Find the rate constant, k.
6. Ammonium cyanate, $\mathrm{NH}_{4} \mathrm{NCO}$, rearranges in water to give urea, $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$:

$$
\mathrm{NH}_{4} \mathrm{NCO}(\mathrm{aq}) \rightarrow\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}(\mathrm{aq})
$$

The rate equation for this process is "Rate $=k\left[\mathrm{NH}_{4} \mathrm{NCO}\right]^{2}$ " where $k=0.0113 \mathrm{~L} / \mathrm{mol} \cdot \mathrm{min}$. If the original concentration of $\mathrm{NH}_{4} \mathrm{NCO}$ in solution is $0.229 \mathrm{~mol} / \mathrm{L}$, how long will it take for the concentration to decrease to $0.180 \mathrm{~mol} / \mathrm{L}$?
7. Hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})$, decomposes to $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ and $\mathrm{O}_{2}(\mathrm{~g})$ in a reaction that is first order in $\mathrm{H}_{2} \mathrm{O}_{2}$ and has a rate constant $k=1.06 \times 10^{-3} \mathrm{~min}^{-1}$.
a. How long will it take for 15% of a sample of $\mathrm{H}_{2} \mathrm{O}_{2}$ to decompose?
b. How long will it take for 85% of the sample to decompose?
8. The compound $\mathrm{Xe}(\mathrm{CF} 3)_{2}$ decomposes in a first-order reaction to elemental Xe with a halflife of 30 . min. If you place 7.50 mg of $\mathrm{Xe}\left(\mathrm{CF}_{3}\right)_{2}$ in a flask, how long must you wait until only 0.25 mg of $\mathrm{Xe}\left(\mathrm{CF}_{3}\right)_{2}$ remains?
9. Gaseous NO_{2} decomposes at 573 K :

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

The concentration of NO_{2} was measured as a function of time. A graph of $1 /\left[\mathrm{NO}_{2}\right]$ versus time gives a straight line with a slope of $1.1 \mathrm{~L} / \mathrm{mol} \cdot \mathrm{s}$. What is the rate law for this reaction? What is the rate constant k ?
10. Common sugar, sucrose, breaks down in dilute acid solution to form glucose and fructose. Both products have the same formula, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$.

$$
\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{aq})
$$

The rate of this reaction has been studied in acid solution, and the data in the table were obtained.

Time (min)	$\left[\mathbf{C}_{12} \mathbf{H}_{\mathbf{2 2}} \mathbf{O}_{\mathbf{1 1}}\right](\mathbf{M})$
0	0.316
39	0.274
80	0.238
140	0.19
210	0.146

a. Plot \ln [sucrose] versus time and $1 /[$ sucrose] versus time. What is the order of the reaction?
b. Write the rate equation for the reaction, and calculate the rate constant, k.
c. Estimate the concentration of sucrose after 175 min .
11. Answer the following questions based on the reaction coordinate diagram shown to the right.
a. Is the reaction exothermic or endothermic?
b. Does this reaction occur in more than one step? If so, how many?
12. What is the rate law for each of the following elementary reactions?

a. $\mathrm{NO}(\mathrm{g})+\mathrm{NO}_{3}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
b. $\mathrm{Cl}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{HCl}(\mathrm{g})+\mathrm{H}(\mathrm{g})$
c. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}(\mathrm{aq}) \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}(\mathrm{aq})+\mathrm{Br}(\mathrm{aq})$
13. Iodide ion is oxidized in acid solution by hydrogen peroxide:

$$
\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{I}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

A proposed mechanism is:
Step 1 (slow) $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{I}-(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{OI}-(\mathrm{aq})$
Step 2 (fast) $\quad \mathrm{H}+(\mathrm{aq})+\mathrm{OI}-(\mathrm{aq}) \rightarrow \mathrm{HOI}(\mathrm{aq})$
Step 3 (fast) $\quad \mathrm{HOI}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
a. Show that the three elementary steps add up to give the overall, stoichiometric equation.
b. What is the molecularity of each step?
c. For this mechanism to be consistent with kinetic data, what must be the experimental rate equation?
d. Identify any intermediates in the elementary steps in this reaction.
14. At temperatures below 500 K , the reaction between carbon monoxide and nitrogen dioxide

$$
\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g})
$$

has the following rate equation: Rate $=\boldsymbol{k}\left[\mathbf{N O}_{2}\right]^{2}$ Which of the three mechanisms suggested below best agrees with the experimentally observed rate equation?
Mechanism 1 Single, elementary step
$\mathrm{NO}_{2}+\mathrm{CO} \rightarrow \mathrm{CO}_{2}+\mathrm{NO}$
Mechanism 2 Two steps
Slow $\quad \mathrm{NO}_{2}+\mathrm{NO}_{2} \rightarrow \mathrm{NO}_{3}+\mathrm{NO}$
Fast $\quad \mathrm{NO}_{3}+\mathrm{CO} \rightarrow \mathrm{NO}_{2}+\mathrm{CO}_{2}$
Mechanism 3 Two steps
Slow $\quad \mathrm{NO}_{2} \rightarrow \mathrm{NO}+\mathrm{O}$
Fast $\quad \mathrm{CO}+\mathrm{O} \rightarrow \mathrm{CO}_{2}$

$\mathbf{T}(\mathbf{K})$	$\boldsymbol{k}\left(\mathbf{s}^{\mathbf{- 1}}\right)$
298	0.0409
308	0.0818
318	0.157

15. Data for the reaction $\left[\mathbf{M n}(\mathbf{C O})_{5}\left(\mathbf{C H}_{3} \mathbf{C N}\right)\right]^{+}+\mathrm{NC}_{\mathbf{5}} \mathbf{H}_{\mathbf{5}} \rightarrow\left[\mathbf{M n}(\mathbf{C O})_{\mathbf{5}}\left(\mathrm{NC}_{5} \mathbf{H}_{5}\right)\right]+\mathbf{C H}_{\mathbf{3}} \mathbf{C N}$ are given in the table below. Calculate E_{a} from a plot of $\ln k$ versus $1 / \mathrm{T}$.
16. Complete the following nuclear equations. Write the mass number and atomic number for the remaining particle, as well as its symbol.
a. $\quad{ }_{26}^{54} \mathrm{Fe}+{ }_{2}^{4} \mathrm{He} \rightarrow 2{ }_{0}^{1} \mathrm{n}+$?
b. ${ }_{13}^{27} \mathrm{Al}+{ }_{2}^{4} \mathrm{He} \rightarrow{ }_{15}^{30} \mathrm{P}+$?
c. ${ }_{16}^{32} \mathrm{~S}+{ }_{0}^{1} \mathrm{n} \rightarrow{ }_{1}^{1} \mathrm{H}+$?
d. ${ }_{42}^{96} \mathrm{Mo}+{ }_{1}^{2} \mathrm{H} \rightarrow{ }_{0}^{1} \mathrm{n}+$?
e. ${ }_{42}^{98} \mathrm{Mo}+{ }_{0}^{1} \mathrm{n} \rightarrow{ }_{43}^{99} \mathrm{Tc}+$?
f. ${ }_{9}^{18} \mathrm{~F} \rightarrow{ }_{8}^{18} \mathrm{O}+$?
17. What particle is emitted in the following nuclear reactions? Write an equation for each reaction.
a. Gold-198 decays to mercury-198.
b. Radon-222 decays to polonium-218.
c. Cesium-137 decays to barium-137.
d. Indium-110 decays to cadmium-110.
18. Predict the probable mode of decay for each of the following radioactive isotopes, and write an equation to show the products of decay.
a. Bromine-80m
b. Californium- 240
c. Cobalt-61
d. Carbon-11
19. Boron has two stable isotopes, ${ }^{10} \mathrm{~B}$ and ${ }^{11} \mathrm{~B}$. Calculate the binding energies per nucleon of these two nuclei. The required masses (in grams per mole) are ${ }_{1}^{1} \mathrm{H}=1.00783,{ }_{0}^{1} \mathrm{n}=1.00867$, ${ }^{10} \mathrm{~B}=10.01294$, and ${ }^{11} \mathrm{~B}=11.00931$.
20. A three step mechanism for the reaction of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$ and $\mathrm{H}_{2} \mathrm{O}$ is proposed:

Step 1 (slow) $\quad\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+1}+\mathrm{Br}^{-1}$
Step 2 (fast) $\quad\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+1}+\mathrm{H}_{2} \mathrm{O} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}_{2}{ }^{+1}$
Step 3 (fast) $\quad\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}_{2}{ }^{+1}+\mathrm{Br}^{-1} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}+\mathrm{HBr}$
a. Write an equation for the overall reaction.
b. Which step is rate determining?
c. What rate law is expected for this reaction?
d. What is the molecularity of each step?

Answers to the Practice Problem Set:

1. Answers:
a. $-\frac{1}{2}\left(\frac{\Delta\left[\mathrm{O}_{3}\right]}{\Delta t}\right)=\frac{1}{3}\left(\frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta t}\right)$
b. $-\frac{1}{2}\left(\frac{\Delta[\mathrm{HOF}]}{\Delta t}\right)=\frac{1}{2}\left(\frac{\Delta[\mathrm{HF}]}{\Delta t}\right)=\frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta t}$
2. $-1.0 \times 10^{-3} \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}$
3. a. rate $=k\left[\mathrm{NO}_{2}\right]\left[\mathrm{O}_{3}\right]$
b. rate triples
c. rate halved
4. a. $\mathrm{NO}=2$ nd order, $\mathrm{O}_{2}=$ first order
b. Rate $=k[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right] \quad$ c. $k=13 \mathrm{~L}^{2} / \mathrm{mol}^{2} \cdot \mathrm{~s}$
d. $1.4 \times$ $10^{-5} \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s} \quad$ e. $5.0 \times 10^{-5} \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}\left(\mathrm{O}_{2}\right), 1.0 \times 10^{-4} \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}\left(\mathrm{NO}_{2}\right)$
5. $0.0392 \mathrm{~h}^{-1}$
6. 105 min (note: 2 nd order kinetics!)
7. a. 153 min b. 1790 min
8. 150 min
9. rate $=k\left[\mathrm{NO}_{2}\right]^{2}$ and $k=1.1 \mathrm{~L} / \mathrm{mol} \cdot \mathrm{s}$
10. a. first order b. $k=0.0037 \mathrm{~min}^{-1} \quad$ c. 0.167 M
11. a. exothermic b. two steps
12. a) Rate $=k[\mathrm{NO}]\left[\mathrm{NO}_{3}\right]$ b) Rate $=k[\mathrm{Cl}]\left[\mathrm{H}_{2}\right]$ c) Rate $=k\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right]$
13.a. (add equations together) b. bimolecular (steps 1 and 2) and termolecular (step 3)
c. rate $=k\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\left[\mathrm{I}^{-1}\right] \quad$ d. OI^{-}and HOI
13. Mechanism 2
$15 . \mathrm{y}=-6373.3 \mathrm{x}+18.19, \mathrm{r}=-1 \quad \mathrm{E}_{\mathrm{a}}=53.0 \mathrm{~kJ} / \mathrm{mol}$
16.Answers:
a. $\quad{ }_{28}^{56} \mathrm{Ni}$
(d) ${ }_{43}^{97} \mathrm{Tc}$
b. $\quad{ }_{0}^{1} \mathrm{n}$ (e) $\quad{ }_{-1}^{0} \beta$
c. ${ }_{15}^{32} \mathrm{P}$
(f) $\quad{ }_{+1}^{0} \beta$
17.Answers:
a. $\quad{ }_{79}^{198} \mathrm{Au} \rightarrow{ }_{80}^{198} \mathrm{Hg}+{ }_{-1}^{0} \beta$
b. ${ }_{86}^{222} \mathrm{Rn} \rightarrow{ }_{84}^{218} \mathrm{Po}+{ }_{2}^{4} \alpha$
c. ${ }_{55}^{137} \mathrm{Cs} \rightarrow{ }_{56}^{137} \mathrm{Ba}+{ }_{-1}^{0} \beta$
d. ${ }_{49}^{110} \mathrm{In} \rightarrow{ }_{48}^{110} \mathrm{Cd}+{ }_{+1}^{0} \beta$
18.a. gamma decay b. alpha decay c. beta decay d. positron decay
14. For ${ }^{10} \mathrm{~B}: 6.26 \times 10^{8} \mathrm{~kJ} / \mathrm{mol}$ nucleons; for ${ }^{11} \mathrm{~B}: 6.70 \times 10^{8} \mathrm{~kJ} / \mathrm{mol}$ nucleons
15. a. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}+\mathrm{H}_{2} \mathrm{O} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}+\mathrm{HBr}$ b. Step 1 c. Rate $=\mathrm{k}\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right]$ d. uni, bi, bi
