CH 222 Winter 2025: **Problem Set #5** *Instructions*

Step One (all sections):

- Learn the material for Problem Set #5 by reading Chapter 10 and Chapter 11 of the textbook and/or by watching the videos found on our website (https://mhchem.org/222)
- Try the problems for Problem Set #5 found on the next pages on your own first. Write out the answers (and show your work) by hand (on a tablet or paper); do not type your answers (and work) to avoid a point penalty. If you write the answers on the problem set itself, you will receive fewer points. Include your name on your problem set!

Step Two:

<u>Section 01 and H1</u>: We will go over Problem Set #5 during recitation. Self correct all **problems** of your problem set before turning it in at the end of recitation.

- Section 01: due Monday, February 17 at 1:10 PM
- Section H1: due Wednesday, February 19 at 1:10 PM

<u>Section W1</u>: Watch the recitation video for Problem Set #5 here: http://mhchem.org/y/x.htm

- Self correct *all* of the problems while viewing the video. Mark correct problems with a star (or other similar mark), and correct all incorrect problems (show the correct answer and the steps required to achieve it.)
- Submit Problem Set #5 via email (mike.russell@mhcc.edu) as a single PDF file (use CamScanner (https://camscanner.com), CombinePDF (https://combinepdf.com), etc.) by 11:59 PM Wednesday, February 19.

If you have any questions regarding this assignment, please email (mike.russell@mhcc.edu) the instructor! Good luck on this assignment!

CH 222 Problem Set #5

* Complete problem set on separate pieces of paper showing all work, circling final answers, etc.

* Self correct your work before turning it in to the instructor.

Covering: Chapter Ten, Chapter Eleven and Chapter Guide Five

Important Tables and/or Constants: R = 8.3145 J mol⁻¹ K⁻¹, "Cubic Unit Cells Guide" (Handout), "Solids" (Lab)

Figure for Problem One

- 1. Use the figure above to answer the following questions:
 - a. What is the equilibrium vapor pressure of diethyl ether at room temperature (approximately 20 °C)?
 - b. Place diethyl ether, ethanol and water in order of increasing intermolecular forces.
 - c. If the pressure in a flask is 400 mm Hg and the temperature is 40 °C, which of the three compounds are liquids and which are gases?
- 2. Answer each of the following questions with increases, decreases or does not change.
 - a. If the intermolecular forces in a liquid increase, the normal boiling point of the liquid
 - b. If the intermolecular forces in a liquid decrease, the vapor pressure of the liquid
 - c. If the surface area of a liquid decreases, the vapor pressure _____.
 - d. If the temperature of a liquid increases, the equilibrium vapor pressure _____.

Problem Set #5 continues on the next page

Problem Set #5, Continued from previous page

Phase Diagram for Xenon

- 3. Use the phase diagram for xenon given above to answer the following questions:
 - a. In what phase is the xenon found at room temperature and 1.0 atm pressure?
 - b. If the pressure exerted on a sample is 0.75 atm and the temperature is -114 °C, in what phase does the substance exist?
 - c. If you measure the vapor pressure of a liquid sample and find it to be 380 mm Hg, what is the temperature of the liquid phase?
 - d. What is the vapor pressure of the solid at -122 °C?
 - e. Which is the denser phase, solid or liquid? Explain.
- 4. The specific heat capacity of silver is 0.235 J g⁻¹ K⁻¹. Its melting point is 962 °C and its heat of fusion is 11.3 kJ/mol. What quantity of heat, in Joules, is required to change 5.00 g of silver from a solid at 25 °C to a liquid at 962 °C?
- 5. If your air conditioner is more than several years old, it may use the chlorofluorocarbon CCl_2F_2 as the heat transfer fluid. The normal boiling point of CCl_2F_2 is -29.8 °C, and the enthalpy of vaporization is 20.11 kJ/mol. The gas and the liquid have specific heats of 117.2 J mol⁻¹ K⁻¹ and 72.3 J mol⁻¹ K⁻¹, respectively. How much heat is

evolved when 20.0 g of CCl_2F_2 is cooled from +40.0 °C to -40.0 °C?

- 6. Tungsten crystallizes in the unit cell shown to the right.
 - a. What type of unit cell is this?
 - b. How many tungsten atoms occur per unit cell?
 - c. If the edge of the unit cell is 316.5 pm, what is the radius of a tungsten atom?

Problem Set #5 continues on the next page

Tungsten unit cell

Problem Set #5, Continued from previous page

- 7. Calcium metal crystallizes in a face-centered cubic unit cell. The density of the solid is 1.54 g/cm³. What is the radius of a calcium atom?
- 8. Equilibrium vapor pressures of dichlorodimethylsilane, SiCl₂(CH₃)₂, are given below.

Temperature (°C)	Vapor Pressure (mm Hg)
-0.4	40.
+17.5	100.
+51.9	400.
+70.3	760.

- a. What is the normal boiling point of dichlorodimethylsilane?
- b. Plot these data as $\ln P$ versus 1 / T. Perform a linear regression on the data. At what temperature does the liquid have an equilibrium vapor pressure of 250 mm Hg?
- c. Calculate the molar enthalpy of vaporization for dichlorodimethylsilane using the Clausius-Clapeyron equation.
- 9. Fill in the blanks in the table. All solutions are aqueous.

Compound	Molality	Weight Percent	Mole Fraction
KNO ₃		10.0	
CH ₃ CO ₂ H	0.0183		
HOCH ₂ CH ₂ OH			0.0599

- 10. Concentrated aqueous sulfuric acid has a density of 1.84 g/cm^3 and is 95.0% by weight H₂SO₄. What is the molarity of this acid? What is the molality?
- 11. Silver ion has an average concentration of 28 ppb (parts per billion) in U.S. water supplies.
 - a. What is the molality of the silver ion?
 - b. If you wanted $1.0 \ge 10^2$ g of silver and could recover it chemically from water supplies, what volume of water, in liters, would you have to treat? Assume the density of water is 1.0 g/cm^3 .
- 12. Hydrogen gas has a Henry's law constant of 1.07 x 10⁻⁶ M/ mm Hg at 25 °C when dissolving in water. If the total pressure of the gas (H₂ plus water vapor) over water is 1.00 atm, what is the concentration of H₂ in the water in grams per milliliter? The vapor pressure of water at 25 °C is 23.8 mm Hg.
- 13. Nonvolatile urea, (NH₂)₂CO, which is widely used in fertilizers and plastics, is quite soluble in water. If you dissolve 9.00 g of urea in 10.0 mL of water, what is the vapor pressure of the solution at 24 °C? Assume the density of water is 1.00 g/ mL, and the vapor pressure of water at 24 °C is 22.4 mm Hg.
- 14. What is the boiling point of a solution composed of 0.755 g of caffeine, $C_8H_{10}O_2N_4$, in 95.6 g of benzene, C_6H_6 ? The normal boiling point for benzene is 80.10 °C and K_{bp} for benzene = 2.53 °C/ *m*.

Problem Set #5 continues on the next page

Problem Set #5, Continued from previous page

- 15. Some ethylene glycol, HOCH₂CH₂OH, is added to your car's cooling system along with 5.0 kg of water. If the freezing point of the water-glycol solution is -15.0 °C, what mass of HOCH₂CH₂OH must have been added? The normal freezing point for water is 0.0 °C and $K_{\rm fp}$ for water = 1.86 °C/ *m*.
- 16. Butylated hydroxyanisole (BHA) is used as an antioxidant in margarine and other fats and oils; it prevents oxidation and prolongs the shelf life of the food. What is the molar mass of BHA if 0.640 g of the compound, dissolved in 25.0 g of chloroform (CHCl₃), produces a solution whose boiling point is 62.22 °C? The normal boiling point for chloroform is 61.70 °C and K_{bp} for chloroform = 3.63 °C/ *m*.
- 17. The organic compound aluminon is used as a reagent to test for the presence of the aluminum ion in aqueous solution. A solution of 2.50 g of aluminon in 50.0 g of water freezes at -0.197 °C. What is the molar mass of aluminon? The normal freezing point for water is 0.000 °C and $K_{\rm fp}$ for water = 1.86 °C/ *m*.
- 18. Estimate the osmotic pressure of human blood at 37 °C. Assume blood is isotonic with a 0.154 M NaCl solution, and use a theoretical van't Hoff *i* factor for NaCl.

This page intentionally left blank for printing purposes